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Normally, when analyzing the physical spectrum of higher dimensional

(2} ane expands the fields of

Kaluza Klein theories'” and of String theories
the theory arround fixed metric and dilaton backgrounds.

One can look for example at the simplest S—dimensional Kaluza Klein
theory, where one dimension is compact, and study the spectrum of matter

fields in the compactified background g,q, A,B= 0,1,2,3,3 given by:
Oy = Ny = diag(—1,1,1,1) for p,v=0,12, (13)
Jss=(Ls)”, 8,5= 0, and O< x° < 2n, with O and 2n identified (1b)

We find that a massliess field in S—dimensions w(x’*,xs), peripdic in x>,
satisfying Dw=(qﬂ"apav+g55(a5)2)w=o, obeys the mode expansion
y= Ty, ($lexp(ing’), n= -0, +0 (2)
where y_(xH) satisfies
2
(a0 +(m )y, =0, m, =(n/Ls) @
That is, from a 4—d point of view we get a spectrum of masses instead

of a single mass. This spectrum consists of an infinite tower of masses,
the spacing between the masses being constant and equal to HLS.

In the previous analysis, we have assumed that the field y is a test
field, and therefore the effect it has on the background metric has been
neglected. It is precisely the assumption that the back—reaction of the
K-K excitations on the metric is small what we wish to examine in more
detail.

While it may be natural to consider a background like (1) as a good
ground state of the theory, it may be that for a localized Kaiuza Klein
excitation, as we get closer to the region where the excitation lives, the
size of the extra dimension increases so that the K—K excitation becomes
Jighter. This may be a way of decreasing the energy of these excitations,
but this fact is non trivial, because making the size of the extra dimension
bigger near the excitation may in principle also cost a lot of energy, since
the size of the extra dimension can be regarded as a scalar field and
making the size of the extra dimension very big in a small region, while
making sure that the size of the extra dimension gets very small
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(approaching its vacuum value) as we go away from the K-K excitation,

implies a big gradient for the scalar field, and this gradient costs enerqgy.
It is easy to see that it is indeed energetically favored to have the size
of the extra dimensions become very large near the region where a Kaluza
Klein excitation with high quantum numbers lives, although the size of the
compact dimensions can approach its vacuum value, which is very small,
very quickly as we move away from the region where the excitation lives.
This is a consequence of the fact that having a very high and even infinite
gradients for the scalar field associated with the size of the extra
dimensions, does not cost much energy (in Planck units). In fact, finite

energy solutions where the extra dimensions are arbitrarily large at the

center of the geometry exist!34,

To illustrate this point, consider the the simpiest 5-D, K—K theory, i.e.
5-D Einstein's equations {for that ses first two papers in Ref. 3), which
for 3—D spherical symmetry has as a solution:

ds?= - AZdt?+B2(dx®+dy® +dz?%)+C%(dx>)? (4a)
a(r)=((ar- nrtar+ X, B=(1/a2r Yar+ ¥y (ar+ 1,
C=C0((ar+ 1)/(ar— 1))‘“' , where r=(x2+gz+zz)‘/2 (4b)

and the constraint cz(xz -x+ 1)=1 must be obeyed. Furthermore, we choose

to compactify x5, s0 that 0¢ x° <2n,with 0 and 2n identified.

Notice that for ¢>0, the size of the extra dimension, 2nC, explodes at
r=1/a. We can see that r=1/a corresponds to the center of the geometry,
since as we let r approach the value 1/a from above, B2 ,1.e the
coefficient of da?=d82+sin?8de?, if we were to use angular variables,
goes to zero.

As we let r approach infinity, AZ approaches the value 1—{dex)/ar,
which implies that these are finite mass solutions, with mass M=2¢x/a,

even though there is an infinite gradient in the size of the extra

dimensions at the center of the geometry, which shows that infinite
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gradients for the size of the extra dimensions may not cost an infiniie
amount of energy, an essential point for our analysis.

This unexpected phenomenon is due to the existence of the gravitational
field, i.e. of the curvature of space—time. In flat space—time, the so

called Derrik's theorem '% prevents us, in dimensions higher than 1+ 1 from
having purely scalar solitons.

In particular, such objects where the extra dimensions become very big
at the center of the geometry, can however be quite small for an outside

observer Y In the cases where this happens, the scalar field associated
with the size of the extra dimensions can exist in two phases: massive and
massless, the massive phase associated with small perturbations arround a
compactified stable vacuum, while the massless phase can be matched to
this massive phase through a spherical domain wall. In the inside of this
Sphem’cal domain wall, where the massless phase lives, the size of the
extra dimensions can approach arbitrarily large values, we called these

(4) »Gravitational Bags".

compact {as observed from the outside) objects
These two phases that a Gravitational Bag matches can be interpreted as a
perturbative ane (inside) and a non perturbative one (outside) since the
Kaluza Klein couplings, which are inversely proportional to the size of the
extra dimensions are very small inside and much bigger outside. An explicit
mechanism, using a generalization of the Freund Rubin mechanism, for
haying this two phase structure for the scalar field associated with the
size of the extra dimensions has been given in Ref. 4, but, if certain
conjectures concerning the dilaton potenti al® are proven right, we would
have Gravitational Bags using the dilaton field in String theories also.

It is easy to see that (4) is a solution of 5—dimensional Einstein
equations everywhere except at the center of the geometry, where we have

a singularity. There one must have a source with T55=0, and T .=0ie,

pS
with isotropic motion in the extra dimension. It is therefore consistent to

Y

say that it is motion in the extra dimensions what causes the growth of the
extra dimensions. Also the analysis of the energy of matter excitations in
the WKB approximation proves that the K—X heavy modes become much
lighter when considered in the background (4) than when considered in the
background (1), which also provides an energy argument of why the extra
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dimensions must become very large near a K-K heavy mode, it is this
enormous energy reduction in the K—K heavy modes what allows
Gravitational Bags to have large entropy contents at small energy costs!)
In the context of String theories, the dilaton field can become very large
near a string excitation, and the result of this is that the string excitation
becomes much ligther. This is because the mass of a string excitation
depends on the local value of the dilaton field (8], like particles in a Brans
Dicke theory, therefore string excitations can become very light provided
the expectation value of the dilaton field grows very much near the region
where the string excitation lives.

We now discuss how Gravitational Bags can play a role in the
solution of some fundamental problems of string theory. The first of these
puzzles concerns the apparent failure of string theories to generate
particles with properties similar to those of ordinary field theories, in

1'% strings appear

particular, as several authors have recently observe
always to have divergent sizes due to quantum fluctuations. Any attempt to

construct string wave functions where the rm.s. size of the string is not
divergent, seems always to lead to a state of infinite energg“ol. From these
studies, one would apparently conclude that finite energy string
excitations do not ook like localized particles under any circumstance.
Our suggestion is that one can avoid this pessimistic conclusion,
provided string excitations live inside Gravitational Bags. This is because
inside a Gravitational Bag, the string has pienty of room to move, since the
extra dimensions are of infinite size at the center of the geometry, so
strings are certainly allowed to have infinite sizes while canfined to the
interior of one of these bags. On the other hand, Gravitational Bags do look
compact to an observer that does not probe the central region, and also its
4-d projection is certainly compact, so in this case, string excitations
‘would be localizable, at least in a 4—dimensional projected sense, or
likewise, for an observer that does not penetrate the domain wall that
separates the massless (inside) from massive phases of the scalar field.
This picture appears also self consistent: not only Gravitational Bags
help strings to have localized excitations, also strings help Gravitational
Bags, since the quantum fluctuations of the string in the center of the bag,
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where the extra dimensions are infinite, should provide the necessary
source at the center of the geometry, which as we mentioned before, must
consist of matter that has motian in the extra dimensions. Furthermore, the
string excitation in the center of the Gravitational Bag may prove (for the
lowest energy excitations) important for the stability of the Gravitational
Bags, since the infinite fluctuations in the center of the bag should be
something that we cannot get rid of {because of quantum mechanics}, and so
would be the source (matter with motion in the extra dimensions) that
causes the extra dimensions to be very big at the center of the geometry.

Finally, there is yet another puzzle that the model of string excitations

living inside a Gravitational Bag appears to solve. This concerns the

observation by Casher!™ that although, as Refs. 9 and 10 show, r.m.s.
string lengths are infinite, by appropiately defining coordinates
corresponding to the center of mass of string bits, these are always inside
their 4—dimensional (i.e. in a suitable projection) Schwarzschild radii. One
then has the potential of finding several problems with macroscopic
causality concerning the prediction of the decay of heavy string
excitations. These problems do not show up however if strings live inside
Gravitational Bags, because Gravitational Bags are horizon free objects,
even if they are much smaller than their Schwarzschild radii {in a

projection on to 4— dimensions), and in fact whatever their (projected
4-D) size is.

In a separate paper''), we will study the issues discussed in this
essay in greater detail.
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