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Abstract

Canonical quantum gravity theories predict a polymer-like structure for space
time at the Planck size. This granularity can be probed using gamma ray
burst observations. Quantum gravity effects typically amount to corrections
of Planck length size per wavelength. Because the distance to gamma ray
burst is very large as measured in the wavelength of gamma rays, the effects
accumulate and are on the brink of being observable. These observations can

constrain certain aspects of the quantum state underlying our universe.
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The quantization of the gravitational field has historically been stymied, in a signifi-
cant part, due to the lack of experimental guidance. Never before in physics have people
attempted to study the quantum mechanics of a fundamental system with so little ex-
perimental evidence to constrain the possible theories. The obstacles to face appear as
monumental. Order of magnitude estimates suggest that even the most favorable quantum
gravity effects from the experimental point of view are several —in most cases dozens— of
orders of magnitude away from observation.

A situation where an order-of-magnitude estimate does not predict abysmally disappoint-
ing prospects was recently suggested by Amelino-Camelia et al. [1]. Consider the light that
comes from a distant astronomical object and assume, as all theories of quantum gravity
predict, that space-time has some sort of “granular” structure at the Planck-length level.
Generically, one expects that propagation of light on such a space-time will exhibit de-
partures from the usual propagation in a continuum. The kind of effects one gets will be

related to the wavelength of the light, and at most will be of order E%%g%gﬁ%h. The
effect per wavelength is very small. But if one considers the number of wavelengths that
occur between a distant astronomical object and the observer, the effects became plausibly
observable. Concretely, consider a gamma-ray-burst. It is now widely accepted that these
are events that occur at cosmological distances L ~ 10'° light years. The wavelength of the
gamma-rays observed by the BATSE detector is in the 200kev range. If one assumes an effect
of the order 2, one gets for the effect a time shift in the waves of ~ 10~%s. Gamma-ray-burst
spectra have been observed with quite a fine time structure. For instance, in reference [2]
features of about 1 ms have been reported in bursts of 0.1s width. This makes such effects
almost observable with current data. The challenge now from the theoretical side is to come
up with specific predictions for the effects to be observed. The more detailed the prediction,
the likelier it will be to experimentally check the effect in noisy data.

Effects in string theory have been suggested [1] to predict a frequency dependent dis-

persion in the propagation of light. Here we will suggest that in the polymer-like nature

of space-time predicted by canonical quantum gravity models, one could find birefringent
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effects. Loop quantum gravity [3] is usually formulated in the canonical framework. The
states of the theory are given by functions of spin networks, which are a convenient label
for a basis of independent states in the loop representation. This kinematic framework is
widely accepted throughout various formulations of the theory, and has led to several physi-
cal predictions associated with the “polymer-like” structure of quantum space-time [4]. The
dynamics of the theory is embodied in the Hamiltonian constraint, and consistent proposals
are currently being debated [5]. To show the existence of the birefringent effect we will not
need too many details of the dynamics of the theory. We prefer to leave the discussion a bit
loose, reflecting the state of the art in the subject, since there is no agreement on a precise
dynamics.

The term in the Hamiltonian constraint coupling Maxwell fields to gravity is the usual

“E? + B?’ term, but in a curved background,
1 3 ~a=b , 7arb
HMaxweu:-z-/de (@ 5. (1)

where we have denoted with tildes the fact that the fields are vector densities in the canonical
framework. Thiemann [6] has a concrete proposal for realizing the operator corresponding
to the metric divided by the determinant, but we will only use some general features of that
proposal.

Since we are interested in low-energy, semi-classical effects, we will consider an approx-
imation where the Maxwell fields are in a state that is close to a coherent state. That is,
we will assume that the Maxwell fields operate as classical fields at the level of equations
of motion, however, we will be careful when realizing the Hamiltonian to regulate operator

products. For the gravitational degrees of freedom we will assume we are in a “weave” state

[7] |A >, such that,

. 14
<Alg A >= b4+ 0(2), (2)
~ab A

where £p is Planck’s length. Weave states [7], characterized by a length A, are constructed

by considering collections of Planck-scale loops. They are meant to be semi-classical states
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such that that if one probes these states at lengths much smaller than A one will see features
of quantum space-time, whereas if one probes at scales of the order of, or bigger than A one
would see a classical geometry. The weave we will consider approximates a flat geometry
for lengths larger than A.

Let us now consider the action of the Hamiltonian we proposed above on a weave state.
We need a few more details of the regularization of g¢ that was proposed by Thiemann

ab
[6]. It consists in writing § as the product of two operators w,(z), each corresponding

ab
to a commutator of the Ashtekar connection with the square root of the volume operator.
The only feature we will need of these operators is that acting on spin network states they
are finite and only give contributions at intersections. We now point split the operator as

suggested in [6], (to shorten equations we only consider the electric part of the Hamiltonian,

the magnetic portion is treated in the same way)

fII\E/‘Ia.xwell = %/d3:1;/dBywa(:z:)wb(y)Ea(a:)E"(y)fe(x - y) (3)

where lim._,o fe(z — y) = 6(z — y), so it is a usual point-splitting regulator, and we have
eliminated the tildes to simplify notation, and as we stated above, treat the electric fields as
classical quantities. The operators 1, only act at intersections of the weave, so the integrals
are replaced by discrete sums when evaluating the action of the Hamiltonian on a weave
state,
. 1 X X .
< AlH el & >= 5 3 < Altha(v:)dn(v5)|A > B*(v:) B (v;) (4)
Vi, Uj

where v; and v; are vertices of the weave and the summation includes all vertices within
the domain of characteristic length A. We now expand the electric field around the central

point of the A domain, which we call P, and get,
E*(v;) ~ E*(P) + (v; — P).0O°E*(P) + - - -, (5)

and given the assumptions we made about the long wavelength nature of the electric fields

involved, we will not need to consider higher order terms in the expansion at the moment.
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Notice that (v; — P). is a vector of magnitude approximately equal to A, whereas the partial
derivative of the field is of order 1/), that is, we are considering an expansion in A/\. We
now insert this expansion in the Hamiltonian and evaluate the resulting terms in the weave
approximation. One gets two types of terms, one is given by the product of two electric
fields evaluated at P times the sum over the vertices of the metric operator. Due to the
definition of the weave state, the sum just yields the classical metric and we recover the
usual Maxwell Hamiltonian in flat space.

We now consider the next terms in the expansion A/\. They have the form,

3.2 < Al > (0~ PLAE(P)EP) + (o5 ~ PE(PIALEP)), (6
When performing the sum over all vertices in the cell we discussed above, we end up evalu-
ating the quantity < Ald,(v;)ws(v;)|A > (v; — P).. This quantity averages out to zero in
a first approximation, since one is summing over an isotropic set of vertices. The value of
the quantity is therefore proportional to £p/A, the larger we make the box of characteristic
length A the more isotropic the distribution of points is. We consider the leading contri-
bution to this term, which should be a rotational invariant tensor of three indices, i.e., it is
given by xeuclp/A with x a proportionality constant of order one (that can be positive or
negative).

We have therefore found a correction to the Maxwell Hamiltonian arising from the dis-
crete nature of the weave construction. It should be noticed that the additional term we
found is rotationally invariant, i.e., it respects the original spirit of the weave construction.
It is, however, parity violating. If one were to assume that the weaves are parity-invariant,
the term would vanish. The term would also vanish —on average— if one assumes that the
different regions of size A have “random orientations” in their parity violation. The fact
that we live in a non-parity invariant universe suggests that parity invariant weaves might
not necessarily be the most natural ones to consider in constructing a semi-classical state of
cosmological interest. Another way to put this is to notice that parity non invariant weaves

seem to be allowed by the theory and we are “experimentally constraining” this fact with
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observations.
Assuming a non-parity invariant weave, the resulting equations of motion from the above

Hamiltonian can be viewed as corrections to the Maxwell equations,

E = —V x B+ 2xtpA’B (7)

8,B =V x E — 2xtpA’E. (8)

As we see the equations gain a correction proportional to the Laplacian A? of the fields,
the correction is symmetrical in both fields, but is not Lorentz covariant. This already
suggests that there will be modifications to the usual dispersion relation for light propaga-
tion. The lack of covariance is not surprising, since the weave selects a preferred foliation of

space-time. If one now seeks solutions with a given helicity,
By = Re (& £ ity)e™@+t7FD) 9)

we get

Q:t = \/k2 F 4X€pk3 ~ Ikl(l F 2X€p|k|) (10)

We therefore see the emergence of a birefringence effect, associated with quantum gravity
corrections. The group velocity has two branches, and the effect is of the order of a shift
of one Planck length per wavelength. This effect is distinct from other effects that have
been discussed in string theory [1] which only imply a change in the dispersion relation.
Here we in addition see a helicity-dependent effect. Being this a more detailed prediction, it
might be easier to “dig out of the noise” of the received gamma-ray-bursts using statistical
techniques, which probably makes the effect almost detectable with current technology.

Finally, can one expect similar effects for propagation of other types of waves? In string
theory models, the corrections are all-encompassing (they can be viewed as modifications of
quantum mechanics itself). In our case, if one considers scalar waves, the kinds of corrections
we study in this paper appear to vanish. For Fermions the situation is more involved, since

they couple in fundamental waves to the weave it is not immediate to develop a coherent
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state approximation as the one we considered here. An intriguing possibility is that disper-
sive effects could depend on the size of the elementary particles considered and one could
therefore envisage terms that violate the equivalence principle, i.e. different kinds of parti-
cles would propagate in different ways in a semi-classical gravitational field. Gravitational
waves could be a another promising place where effects like the one predicted here could be
present, especially since space-based interferometers could detect waves coming from almost
arbitrarily large distances [8]. Unfortunately, the low frequency of the kinds of gravitational
waves likely to be detected in the near future make the effect that appear to be too small
to be detected.

Summarizing, one expects that propagation of classical waves in a disordered medium will
generically produce dispersive and possibly birefringent effects. This note can be considered
as a first step towards a more exhaustive analysis of these effects. Given the possibility of
experimental observation, this line of research should definitely be pursued.
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