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ABSTRACT

A rapidly growing area of gravity research is the study of
particle creation by gravitational fields, an effect predicted by
guantum field theory. To calculate the influence of the created
particles on the gravitational field producing theﬁ, it is
necessary to find the physically effective renormalized energy-
momentum tensor. We discuss an analysis of the concept of
physical particle states which seems to lead in a natural manner
to the renormaiized tensor. Included is a demonstration that
our definition of particle states yields physically correct
results when applied to the particular Kasner universe which

reduces to Minkowski space.



Among the most interesting and important topics under
current study in the theory of gravitation are the various types
of quantum phenomena which occur in the early universe and in
gravitational collapse; because of the presence of strong or
time-dependent gravitational fields. 1In many applications it is
sufficient to treat the gravitational field classically, while
describing the matter and radiation by means of quantized fields.
Such investigations are usually carried out in two general stages.

First, the gravitational field is taken as given (for
example, one of the known solutions of the classical Einstein
equations), and the quantum phenomena growing out of it are
studied, ignoring their influence on the spacetime which produces
them. At this stage one already finds the important phenomenon
of the creation of elementary particles (e.g., neutrinos, photons,.
electrons, pions) by the gravitational field. This particle
creation and its classical analogues (backscattering and super-
radianée) have been discussed in cosmological metrics [1-16],
and also in black hole geometries and for gravitationally
collapsing objects [17-23].

The second stage of development involves the influence, or
reaction, of the particle creation on the gravitational field.

In this case the expectation value of the energy-momentum tensor
of the quantized particle fields acts as the sourcé of the
Einstein gravitational field, and one solves for the metric, thus
taking into account the particle creation. Such calculations
have been carried out so far primarily in the cosmological
context (24-25], with the aims of explaining the origin of

the observed isotropy and homogeneity of the universe and of
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investigating the effects on the cosmological singularity. Of
prime concern in this type of problem is the definition of the
physically relevant energy-momentum tensor, since the formal
expression given by quantum field theory has infinite expectation
values. Techniques of regularization and renormalization for
dealing with that problem are being developed [26-27, 10, 28-30].
For homogeneous, time-dependent spaces which are not necessarily
asymptotically flat, such as one encounters in cosmology, the
definition of the physical energy-momentum tensor is naturally
closely related to the problem of finding the physically relevant
generalization of the concept of single-particle states of
definite energy and momentum (i.e., positive- and negative-
frequency solutions of the particle field equations). The rest
of this éssay will be devoted to a discussion of a physically
motivated generalization of the decomposition into positive- and
negative-frequency solutions, and to the presentation of a new
result which bears on the question of the general covariance of
this decomposition.

To write down a canonical quantum field theory against a
curved background metric is straightforward, but to interpret it
physically in terms of particles is a subtle problem [see 3, 6,
12, 31-33]. We have been considering this question for time-
dependent but (at least so far) spatially homogeneéus spacetimes,
and have obtained encouraging results. One notes first that if
a time-dependent metric is static during certain intervals, then
the number of particles present is well defined at those times
and is an adiabatic invariant. More precisely, when one

considers a family of similar metrics (initially and finally
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static), differing in their rate of time variation, one finds
that the density of particles created from the vacuum vénishes
faster than any power of that rate as it tends to zero. This
suggests that particle observables can and should be defined in
a general time-varying situation (not necessarily static at any
time) so that the particle number is an adiabatic invariant to
the greatest possible extent [3, 6]. The particle concept in a
time-varying metric can in general only be approximate, since, in
analogy to the time-energy uncertainty relation, the very fact
that the particle number is changing makes its measurement to
arbitrary accuracy impossible [6, Sec. E].

The adiabatic construction of particle states is implemented
(3, 28, 30] by solving the field equation in the adiabatic (slow)
limit in a generalized WKB approximation. 1In the static case
the wave function of a particle must be a positive-frequency
solution: the characteristic form of its time dependence is
(2(»)-';5 e_iwt. When the metric is changing, we define a solution
to have positive frequency if it is well approximated at all
times in the adiabatic limit by a superposition of functions of

the form

t
(2w) % e-if w(t')at’
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as opposed to those with +i in the exponential. Hére t is an
appropriately rescaled time coordinate, and W(t) depends only on
the metric and its time derivatives at t. W can be chosen so
that the approximation is wvalid to an arbitrarily high order in
the rate of time dependence [34]. The fact that the solution is

not precisely‘of this form, but rather develops a component of
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the opposite frequency, is the mathematical expression of the
phenomenon of particle creation. Once the concept of "positive
frequency" is established, the meaning of "particles" and the
"vacuum state" follows from the usual development of quantum
field theory.

The adiabatic definition of the vacuum state is leading
toward a éonvincing definition of the effective energy-momentum
tensor. We expand the infinite formal expression for the tensor
in a power series in a parameter representing the curvature of the
spacetime — in particular, this entails going to the adiabatic
limit as regards the time dependence. The divergent leading terms
of this series can, after some manipulation, be shown to be
formally proportional to tensors describing the geometry of the
spacetime: the metric tensor 9y =~ 4]g|-%6[|g|%]/6guv, the
Einstein tensor G = 2|g|-%6[|g|%R]/6g”V, and two quadratic
tensors,

(1)
HV

2|9 %5 1] g| "R?) /6 g*Y

and

(2)
HV

2|g|'%6[|gl%Ra8R“B]/sg"” .

(Here we have gmphasized the covariant nature of the quantities

by writing them as variational derivatives of the terms in the
quadratic scalar Lagrangian of a generalized graviéation theory;
Ro‘B is the Ricci tensor and R the curvature scalar.) The
gravitational effect of these terms is to renormalize the effective
physical values of the cosmological constant A, the gravitational

constant G, and the coupling constants, Y1 and Yoo of quadratic

terms which must be included in the gravitational field equation.



The remainder of the series is the finite, physical energy-
momentum tensor <Tuv? which acts as the source in the renormalized

field equation:

G . + Ag

(1) (2).  _ _
- +v, CVH O+ H ) 871G <T > .

TRV uv Y2 uv

Renormalization in the context of classical gravity and quantum
matter has been studied earlier by Utiyama and DeWitt in
asymptotically Minkowskian spacetimes [27]. (See also the
interesting suggestion of Sakharov [35].) But the adiabatic
analysis 5f the particle concept seems to be an essential ingre-
dient in carrying it out explicitly for a cosmological metric.

The natural appearance of geometric tensors in the asymptotic
expansion of the energy-momentum tensor strongly suggests that
the adiabatic construction of positive- and negative-frequency
solutions is a special case of a more general, manifestly
covariant, procedure. Further support for this viewpoint is
given by'the following argument, which shows that in a particular
model admitting two coordinate systems in which the metric is
spatially homogeneous, the corresponding definitions of particles
are physically equivalent.

In Minkowski space with coordinates (yo,yl,yz,y3), introduce

2

new coordinates (t,xl,x ,x3) by

y0 = t cosh xl, yl = t sinh xl, y2 = xz, y3 = x3 .

<

The metric in the region where y° > Iyll takes the form

ar? = at? - t2(axh)? - @x®? - @x3H?,

a degenerate special case of the Kasner solution [36] of the
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vacuum Einstein equations, which describes an anisotropically
changing, spatially homogeneous univefse. We shall show that
the adiabatic definition of positive- and negative-frequency
solutions in Kasner coordinates is consistent with the standard
definition in Minkowski coordinates. The Klein-Gordon equation

of a scalar field in Kasner coordinates is

2 2 2
as . las _ 1 a‘s  _ a%s  _ _a% 2
tTtae T 2

at? £2 d(x1)°  d(x4)?%  a(x)?

Its solutions can be expressed as linear superpositions of the

elementary solutions

. > >
ok = H(]:i) (»’kz2 + k2 4 m? oy KX
¥ ik 3
where the H(J) (j = 2 for ¢+, j =1 for ¢ ) are Hankel functions

lkl

of imaginary index, ik The asymptotic. behavior of these

1‘
functions when their arguments are large [37, p. 962] is

-, 2 2 2
_ o YRSkt 2o
¢§ ~ const x t %(kzz + k32 + mz) % e 2 3 elk X .

It follows that ¢i is a positive-frequency function in the Kasner
coordinates by out previously discussed definition. On the other
hand, using an integral representation for the Hankel function
[37, p. 955] we can express ¢£ as a superposition of positive-

frequency plane waves in Minkowski space:

- . 2
. =1k,/2 (o -i /5 +m” y > > =ik.z
¢ % e I f dz e Py 1

~ +

2 2, .2
where P, = - /kz +k3 +m~ sinh z, p, = k2, Py = k3. The absence
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of negative frequencies (e+iwy ) in this expression shows that
the adiabatic definition of particles in the degenerate Kasner
universe agrees with the familiar notion of particles in
Minkowski space. In the corresponding quantum field theories
the vacuum states can be chosen to be the same, and the fheories
will be unitarily equivalent.

Our definition of particles has thus passed a stringent
test. Results such as these lead us to believe that the
adiabatic particle concept and the corresponding renormalization
of the energy-momentum tensor are physically correct and will
find applications in various studies of the interaction of

quantized matter with classical gravitational fields.
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