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Summary

For a certain class of three-manifolds, the angular momentum
of an asymptotically flat quantum gravitational field can have
half-integral values. In the absence of a full theory of quantum
gravity, this result relies on a set of apparently natural assump-
tions governing the kinematics of such a theory. A key feature is
that state vectors are in general invariant only under asymptotically
trivial diffeomorphisms that can be continuously deformed to the
identity. Angular momentum is associated with diffeomorphisms
that look asymptotically like rotations; and the question of
whether half-integral values occur depends on whether the diffeo-
morphism associated with a 2w rotation is itself deformable to the

identity.



Objects that change under a 2m rotation entered physics via quantum
mechanics; and unlike field with integral spin, they have no classical
counterparts. Nonetheless, to a flat space physicist, fields with integral
and half-integral spin appear formally on an equal footing, in that their
components transform under a change of basis as finite dimensional repre-
sentations of the (covering group of the) Lorentz group. That objects
with half-integral spin play no classical role appears simply as a
manifestation of the connection between spin and statistics: classical
fields do not represent a large number limit for fermionms.

But in curved space, the different in behavior between the two
types of fields is accompanied by a more uncomfortable formal distinction,
Integral spin fields -- tensors -- are geometrical objects [1] whose
components transform under a change of basis as representations of the
general linear group GL4. Half-integral spin fields -- spinors -- are
in contrast defined only when a metric is present and have components
only along orthonormal frames; their components thus belong to no repre-
sentation of GL, (in fact GL, has no finite dimensional spinor represen-
tations).

Thus, while supersymmetry [2], in which bosons and fermions are
treated as equal, seems natural from a flat space point of view, the
older geometrodynamics [3] program, which accords a primary role to

bosons seemed more appropriate in the context of general



relativity. Within geometrodynamics, there seemed no clear way to construct
objects with half integral spin, although Finkelstein and Misner [4] suggested
that nontrivial spacetime topology might permit state vectors which change sign
under rotations.*

Although the actual mechanism differs from the possibilities discussed
in [4], it is remarkable that states with half integral spin do in fact arise
from the quantization of integral spin fields having a gauge degree of freedom
6], and in particular from quantum gravity |7]. In the absence of a well
defined quantum theory of nonlinear fields, this statement relies on a set of
assumptions governing the character of such a theory, and we will list these
explicitly below. First, an intuitive indication of how half-integral spin
states can arise: When a gauge degree of freedom is present, the classical
configuration space (the space on which a Lagrangian function is defined) is,
in general, larger than the space of physically distinct fields. The image of
a field under a 27 rotation need only be a gauge related field, and the effect
on configuration space of a 2m rotation will be a gauge transformation R(2m).
As a result, even at the classical level an action of the rotation group (or
of the Lorentz group) on configuration space will not in general be single
valued. In the corresponding quantum theory, if state vectors are regarded as
functions on the classical configuration space, the induced representation of
0, on the quantum space of states will be single valued only if ¥ is invariant
under the gauge transformation R(2m).

Let us now relate the ideas sketched above to quantum gravity. Let M
denote a 3-manifold that can be compactified by adding a single point (Io)

at infinity. Leta”(M be the set of smooth, positive definite, asymptotically

A related suggestion there that twists in the light cone structure could lead
to half-integral spin was considered by Williams and by Williams and
Zvengrowski [5] who, however, incorrectly identified the angular momentum
operator by treating metric components, in effect, as scalars,



*
flat 3-matrics 8,p O M. Then the various‘ALM comprise the classical config-
uration space, and diffeomorphisms of M represent the gauge freedom of the

classical theory. Denote by /}t a vector space of functionals V¥: J%,M +~ C

M
Our first (of four) assumptions asserts that a Schrodinger representation
exists and that manifolds which arise classically are also present in the
quantum theory.

I. There is a representation of quantum gravity in which the state space
includes a nonvanishing subspace ng for every M that occurs classi-
cally as a Cauchy surface of an asymptotically flat vacuum spacetime.
The second assumption concerns the meaning of the ''momentum constraint"

[8]. In classical relativity, the momentum ﬂab conjugate to gab is constructed

from the extrinsic curvature of M (when M is regarded as an embedded hyper-

surface) and it satisfies the equation

v =0 . (1)

Replacing nab by %-%E——’ and contracting with a vector field Ea that vanishes
ab
at infinity, one finds for any state vector ¥ that

de D Eb EE—;T;T v(g) = dl W(ng) =0, | (2)

where Xy is a family of diffeomorphisms for which the path A - XA(P) is tangent
at P to Ea. Equation (2) means that Yy is invariant under diffeomorphisms that
are asymptotically trivial (approach the identity at infinity) and which can
be joined to the identity by a path X3 of such diffeomorphisms; this is the

content of the next assumption.

We can take this to mean that there is a flat metric sab defined near Io on

ab’ = 8ab = Sap 18

is O(r~ ) where r is a radial coordinate and V the covar-

M and that, to within boosted Schwarzschild terms, h
-2
O(r °) and vahb

iant derivative associated with Sab



II. For each M, there is a set of D of asymptotically trivial diffeomorphisms
which includes all diffeomorphisms of compact support and is such that
for all x in Do’ the component of the identity in D, ¥(g) = ¥(xg).

If Cf = /V(,/Do is the space of equivalence classes [gab]’ assumption

(II) is the statement that Y is a function on Z?. There is a precise analogue

of (II) in Yang-Mills theory. Eq. (1) is replaced by the Gauss constraint
Vaga = 0, and the corresponding quantum constraint is the statement that state
vectors Y are invariant under gauge transformations in Go’ the component of
the identity in the space G of asymptotically trivial gauge transformations.
Gauge transformations not in G,, however, do not leave invariant the states of
Yang-Mills quantum theory. Transformations that are asymptotically finite are
associated with the charge operator, while transformations in G but not in Go
change the phase of Y by a multiple of the Yang-Mills angle 6 [9 ]. In
gravity, diffeomorphisms that are finite at infinity are associated with
momentum operators; and a change of states under diffeomorphisms in D but not
in Do is the key to half-integral spin. In particular, if a vector field g2
is the generator of an asymptotic symmetry, the associated conserved quantity

(the ADM momentum or angular momentum associated with Ea) is

1d

where Xy is the family of diffeomorphisms generated by g2, (IT implies that

P‘S depends only on the asymptotic behavior of Ea.) Thus, to require invariance
under diffeomorphisms that are finite at infinity would be to rule out states
of nonzero momentum and angular momentum. To preserve generality, we there-
fore assume

I11. 1If [gab] and [géb] are in C?M and [gab] # [géb], there is some Y in )£M

for which V(g ) # V(g))-



Finally, we assume as a prerequisite for a reasonable theory that one be
able to define the angular momentum operators corresponding to a rotational
subgroup of the symmetry group at spatial infinity. Let ¢aa, a=1-3, be

generators of asymptotic rotations which satisfy the commutation relations

EOLBY ¢Y

[6ys 0g] = -
in a neighborhood of spatial infinity (Io); let Ra(e) be the family of diffeo-
morphisms generated by ¢a'

IV. An SO(3) subgroup of the symmetry group at spatial infinity (of M) acts

on'a‘ﬁM by the (possibly double valued) representation
R,(O)W(g) = ¥(R (0)g) -
In other words, the angular momentum associated with ¢a is

a 1d
S @) = T §5 VIR (®)e] .

These four assumptions together imply the existence of state vectors
having half-integral angular momentum. In particular (writing R(2m) = Ra(ZW)
for some o), if R(2m) is not deformable to the identity on some manifold M,
then (III) implies ﬁ(Zn)w # ¥ for some Y in aeM’ whence YP' := ﬁ(ZW)w-w is an
eigenstate of ﬁ(Zﬂ) with eigenvalue -1: Y' is a nonvanishing superposition of
states having half-integral angular momentum.

When M is topologically Euclidean, R(2m) is in Do’ for we can define
rotational vector fields ¢a on the whole of M and thereby make R(2m) the
identity. In the general case, R(2m) is in Do only if one can communicate a
rotation by 27 at infinity to the whole interior of the space. Surprisingly,
a recent theorem [L0] in differential topology in effect characterizes all
3-manifolds for which R(27) is in Do; and it is easy to find manifolds M which

occur classically as spacelike hypersurfaces of asymptotically flat vacuum

spacetimes, and for which R(2m) is not in Do’ In particular, if H is a sub-



group of SU(2), the manifold of cosets SU(2)/H (called an elliptic space)
occurs classically as a compact hypersurface and, with one point removed, as
an asymptotically flat hypersurface of a vacuum spacetime. Choosing H to be,
for example, the quaternion group then implies R(27) £ D, on M = SU(2)/H - Io.
(This M can be constructed by removing from ﬂis a solid cube and then identi-
fying opposite faces of its boundary after a 90° rotation.) Then (I) and (II)
imply the existence of state vectors ¥ with half-integral angular momentum.

Some further aspects of the work deserve at least a brief mention. In
the Schrodinger representation, there is an additional constraint associated
with the Hamiltonian density of the theory which vanishes élassically; a
common way of treating this last constraint is to change to a representation
in which the trace, m, of the extrinsic curvature and the conformal 3-metrics
(the equivalence classes of 3-metrics that differ only by a conformal factor
that becomes 1 at infinity) are independent variables.
The momentum constraint again has the meaning that state vectors are invariant
under diffeomorphisms of M, and the space Ef of conformal metrics modulo
diffeomorphisms in D, has the same number of disconnected components as £ had.
The criterion for the occurrence of half-integra?f;s thus unchanged.

We have not considered here the question of a spin-statistics relation.
The prototype construction of spin-1/2 from integer spin objects is the quantum
mechanical system of an electric and magnetic charge where half integral spin
arises from the angular momentum of their Coulomb fields. There an asymptotic
interchange of two identical (electric charge, magnetic charge) systems changes
the sign of the wave function precisely when it ought to--when the total
angular momentum is half-integral [11]. In the Yang-Mills‘“spin from isospin”

constructionfplasymptotic interchange of two isolated identical solitons can

again be shown to change the sign of the state vector precisely when each has



half-integral angular momentum [12]. In gravity, however, the connection
between spin and statistics seems more subtle and may rely on understanding a
dynamics that can accommodate the topology change needed to define '"particle"
creation.

Finally, it should be emphasized that any diffeomorphism on M not in the
component of the identity acts nontrivially on the state space 9€M. Thus the
group D/Do b ﬂo(D) is a symmetry group acting on states associated with a
manifold M. In the geometrodynamics picture of a nontrivial topology as a
particle (an extended object of size on the order of the Planck length), D/Do
represents an internal symmetry group, and its irreducible representations
will determine the possible particle multiplets associated with the particular

manifold M.
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