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A new compact form of the dynamical equations of
relativity is proposed. The new form clarifies the-
covariance of the equations under coordinate transformations
of the spacetime. On a deeper level? we obtain new insight
into the infinite dimensional symplectic geometry behind
the equations, decompositions of gravitational perturbations
and the space of gravitational degrees of freedom. Prospects
for these results in studying fields coupled to gravity and

the quantization of gravity is outlined.



It has been over fifteen years since Arnowitt, Deser and
Misner laid down the basic formulation of Einstein's equations
as djnamical equations for ah evol&ing spatial universe ([3],
[16]1). This procedure is basic for establishing the existence
and uniqueness theorems in general relativity ([6], [14]1), for
a study of stability of spaéetimes (L8], [12], [191) and the
positivity of their energy content ([41, [9]), and for
approaching many other'important questions.

On the other hand, there have been significant develop-
ments in Hamiltonian mechanics and symplectic geometry (i.e.
Poisson bracket structures) during the same period. Both
classical mechanics and field theories have been successfully
put into this general context ([1], [5].) From this
geometrization and unification spring new insights and methods.
Specifically, there is.now a satisfactory general proceduré
for eliminating the symmetries of a given Hamiltonian system.
Previously, this was well understood in the classical
literature only for commutative éymmetry groups (i.e., for
the relatively rare occurrence of first integrals in involu-
tion) and in special cases, such as rotational symmetry (see
[15] and [20]). This is important in relativity since its
~gauge group is non-commutative and is infinite dimensionalfn

It is tempting to apply this new elimination procedure
to the space of solutions to Einstein's equations and thereby

remove the coordinate symmetries of a spacetime. The result-



ing space of four-geometries is called the space of gravita-
tional degrees of freedom. Some'importént conformal
representations of this space have been constructed by York
(L1971, [21], [22]). However, we desire a construction which
is natural with respect to thé‘dynamics, and wish to prove
that the space 1s a smooth infinite dimensional manifold and
carries a Poisson bracket structure. |

In the meantime, Moncrief [18] has published an important
new decomposition of gravitational perturbations, one piece of
which represents the direction of the space of gravitational
degrees of freedom. This decomposition unifies and extends
several previous decompositions in geometry aﬁd’relativ?ty due
to‘Barbance, Deser and Berger-Ebin. However, only Moncrief's

formulation reveals explicitly the symplectic matrix

J = ° : , I = identity operator.
~-I 0
The above developments suggest that betweenlthese other-
wise diverse approaches some beautiful connections can be
made. However, there is an immediate and basic obstacle. The
dynamical equations of Arnowitt-Deser-Misner are not writtén
in a form which makes explicit use of the symplectic structure

and consequently it is not clear how to use the symplectic

geometry alluded to above. Part of the problem is that the



equations contain terms involving the lapse function N and
the shift vector fiéld X . These terms are necessary because
of the arbitrary way the SPaéetiﬁe can be sliced into space
and time or, in other words, because of the coordinate invari-

ance of the'spacetimg.

The remainder of the essay will explain how the authors
have solved this problem using a new form for the evolution
equations and how the solution might be useful for future
research.

We begin with some notation that will enable us to state
the equations. Let M be a 3-manifold and le{ Q Dbe an open
subset of a linear space of c” tensor fields of,some‘speci—
fied type on M and let Q* be the space of dﬁal tensors.
For instance, if Q consists of the symmetric covariant t@o
tensors ¢ = ¢ij s 'Q* is the set of contravariant symmetric
two tensor densities T = Wij . If L: Ql > Q2 is a linear
differential operator, L*: Qz > Q: denotes its adjoint
obtained in the usual manner by integration by parts. If
T: Q1 -> Q2 is a non-linear differential operator, DT(¢)
dendtes its linearization (= Fréchet derivative, or functional
derivative) at ¢ € Qy » so DT(¢) 1is a linear differential
operator from Q1 to Q2 . We let J denote the sy@plectic

matrix on Q X Q“ as defined above and let P = QXQ" denote

the phase space.




Lie differentiation £X¢ "of fields ¢ by vector fields

X dis a first order differential operator in X . Its nega-

tive adjoint is called the flux density gf ; it may be
regarded as a map of P to 4Aé R the one form densities (dual

to vector fields), and is explicitly defined by

'Jxlj(¢,n) =A*Jﬂ-£x¢ N

Let ¥: P -» Cd (scalar densities) be a given Hamiltonian

density and define

, 8(o,m =,<a(¢,n)2f(¢,ﬂ))

For general relativity, Q 1is the space of Riemannian

metrics g.. on M , Q the symmetric two tensor-densities
1]

o33 and (see [31, [u1, C101)
og,m) = (nom - % (trm)? - R(g))Vdets;;

where -+ denotes contraction to scalars, +tr 1is trace and
R(gj is the scalar curvature. One calculates.that
jkg,ﬂ) = 2ﬂij|j , twice the covariant divergence of w .

Let us next recall the meaning of the lapse and éhift
functions of Wheeler (see [16]). Let V be a spacefime with

(4)g

a Lorentz metric . Let ir'1 be a slicing of V by M j



i.e., for each number ) , iy 1is an embedding of M to a
space-1like hypersurface of AV (and these embedded manifolds
fill out an open set in V ). Tﬂélk—derivative of i, is a
vector field on V defined along the }mbedded hyperéurfaces.
Its normal and tangential components, regarded as scalar and
vector functions on M , are called the lapse N and shift X .
They depend of course on the slicing of the spacetime and in
fact characterize the slicing.

For vacuum spacétimes, Einstein's equations state that

(u)g vanishes. Arnowitt-Deser-Misner

the Ricci tensor of
showed that these equations are equivalent to certain compli-
cated looking evolution equations and constraiht equations
~(see [16, p. 525]) for the 3-metric bgij induced on M by a
slicing and its corresponding conjugate momentum ﬂij
(defined to be ((kzz)gij—kij)/agfgim where kij'“is the
second fundamental form br extrinsic curvature of the embedded
hypersurface regarded as a two tensor on .M ).

Our first main point is that these equations can in fact
be written in the following compact way ( A , the slicing

parameter is often denoted t , but it need not be a time-like

direction so we use X ):

(E) =% (i)

% (N
J-Dé(g,m) <X) [evolution equationsl]

!
(en]

(Cc) a(g,m) [constraint equations]



Computing the adjoint D@(g,ﬂ)* (see [121) shows that these
equations are equivalent to the'Arnowitt—Deser—Misner equations.
This new way of writing'the/equations is of intrinsic
interest in itself. However, we claim something more profound:
we assert that equations of the same form also apply if there
‘are general tensor fields present (for example, electromagnetic

or matter fields) in addition to the gravitational fields.

These new equations are

8 g) ¢ o N
(ET) EEN = J-D@T((g,¢),(ﬂ,ﬂ¢)) (X)
» Ty T
¢
(CT) @T((g,¢),(ﬂ,w¢)) =0

where ¢ represents all fields other than the metric -g 5.

ﬂ¢ is the conjugate momentum of ¢ and
_ 2
op = (ﬁ;elativity ¥ mgther fields ’5;;e1ativity-+éjgther fields)

is the total Hamiltonian and flux density.for the coupled
system. These equations give a unified Hamiltonian formula-
tion of general field theories coupled to gravity!

.vWe shall now make.a series of remarks intended to show
the geometric and analytic utility of this new formulation of
Hamiltonian equations'for field theories.

First of all, the form shows explicitly how the dynami-
cal equations are generated by the constraints, and how the

equations depend explicitly on the slicing. Moreover, it shows



that the equations are of Hamiltonian type (see [5]) using a
symplectic structure J independent of the slicing.

Next, the form (E) allowé/§ne to see more easily
relationships between properties of the spacetime and corre-
sponding conditions on the Cauchy data. - For example, it
simplifies the calculations in the proof of Moncrief's cri-
teria, which relates linearization stability of solutions
of the constraint equations, and hence of the spacetime,to the
absence of Killing fields on the spécetime (see [8], [12],
[17]). Very recently this idea has been used by J. Arms to
successfully analyze the linearization stability of the
coupled Einstein-Maxwell system.

Thirdly, it gives a unifiedvpicture of decomposition
theorems used in relativity. Moncrief's basic decomposition

theorem [18] states that the phase space can be dééomposed as

follows:
P = range J-D@(g,w)“ ® (kernel D&(g,m) N
(D) |
Kernel Dd(g,m)-J) @ range Dé(g,m). = Do @o ©
(see Figure 1 below). This generalizes Deser's classical

decomposition of tensors into transverse-traceless and other
pieces. In terms of the new equations (E), the decomposition

(D) Dbecomes a special case of a general fact in symplectic



geometry ([2]). The present formulation is not merely a
restatement; it also.shows us with no extra effort how to
explicitly decompose perturbatiéﬂs of general field theories
coupled to gravity!

Finally, the form (E) enables us to give a representa-
tion of the space of gravitational degrees of freedom which
is directly related to thé'dynamical equations. We let %?
denote the space of solutions of the constraint equations (C) .
It is known under what conditions % is a manifold near
(go,ﬂo) (see [12]). A family ik of embeddings of M into
V , i.e., a slicing, acts on the-space <g? as follows: if
(ggomy) € ¥ and i, is an embedding of M in V , then

A) , the metric and conjugate

momentum induced on the hypersurface iX(M) in the four-

geometry (u)g generated by (go,ﬂo) on iO(M) . This

(gyomy) is transformed to (gA,ﬂ

transformation is exactl& that induced by the dynamics (E)

and is therefore an (infinite dimensional) canonical transform-
ation. If we identify all such (go,ﬂo) and (gx,ﬁx) we
obtain a quotient space & . The general theory of'reduction
of phase spaces with symmetry [15] shows that & is a smooth
symplectic manifold. Moreover, since coordinate transforma-
tions yield the different possible slicings, & is identifi-
able with space of solutions of Einstein's equations with
solutions related by a coordinate transformation identified;

i.e., with the space of gravitational degrees of freedom.



The tangent space to & is exacfly the second summand in the
decomposition (D) showing the natural relationship of the
two ideas. The three summands in (D) and the manifolds &
and & are shown in Figure i.

Similar methods of symplectic geometry can be applied to
~give results for'genéfal field theories coupled to gravity.
Our new formulation of these coupled systems allows for the
organization of deep theorems concerning the structure of the
spaces of degrees of freedom in a systematic and unified manner.

Future prospects for the methods described here are bright.
There is every reason to believe that a more profound under—
standing of fields coupled to the purely gravitational field
will result. In another direction, there is hope that it will
help clarify the quantum gravity problem as well. Admittedly,
the solution of the coordinate gauge problem is only a begin—
ning but its rigorous resolution is still a significant one,
for we now have a well defined symplectic space in which to
quantize.

It is gratifying that methods of infinite dimensional
analysis have been so successful in recent years (see [4]1, [7],
[91, [11]1, [14]). It is now time to seriously use the addi-
tional machinery provided by the natural symplectic structure

of the spaces involved.
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orthogonal complement
to the constraint space
3

& = the space of gravitational
degrees of freedom

%§7= constraint
space

. orbit of (g,m) under
the dynamical equatior

(E)

Figure 1.
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