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‘ ‘ Global Analysis and General Relativity.

Arthur E. Fischer and Jerrold E. Marsden
Abstract

An outline of recent applications of modern infinite dimen-
sional manifold techniques to ggneral relativity is presented. The
uses, scope, and future of such methods are delineated. It is argued
that the mixing of the two active fields of general relativity and
global analysis provides stimulation for both.fields as well as pro-
ducing good theorems. The authors' work on linearization stability

of the Einstein equations is sketched out to substantiate the arguments.



-

The past few years have seen new branches of mathematics
applied to problems in general relativity. One of the most important

of such applications has been to the study of the topology of
spacetimes in the works of Geroch, Hawking and Penrose. Using tégh—
niques of differential topology and differential geometry, they prove,
for example, various incompleteness theorems from which one may infer
the existence of black holes--under reasonable mathematical hypothgses
on the spacetime involved. See W. Kundt [11] for a recent survey and
a bibliography for this subject .

The techniques used in the gbove are taken from the study of
the topology and geometry of finite dimensional manifolds. However the
theory of infinite dimensional manifolds has been considerably developed
over the past fifteen years and the time is ripe for their apﬁlication
to general relativity. The purpose of this essay is to outline some
applications which have been made and to point out some directions fof
future work in this field.

There hgve already been some significant applications of the

theory of infinite dimensional manifolds to other fields. Perhaps the



first of these was given by Eells, Palais and Smale to the calculus
of variations (cf. Smale [16]). Their ideas and methods have been a
great stimulation to other workers in non-linear analysis. Another
application has been given to fluid mechanics by Ebin and Marsden [6].
In these gpplications, analysis on the infinite dimensional spaces
involved is not superficial, consisting merely of a rehash of old
ideas in fancy language. Rather, the methods reflect a fundamental
change in policy, with the new analysis being used in an essential way.
That infinite dimensional manifold fheory is relevant for
general relativity was first pointed out by J. A. Wheeler (cf.[lT])ﬁ
He stressed the usefulness of considering superspace‘ei. ;af consists
of riemannian metrics on a given three manifold M, with metrics which
can be obtained one from the other by a coordinsate transformatiog,
identified. This space 451 is important for we can view the uni§e£se
as an evolving (or time dependent) geometry and hence as a curve in
,ef .v The geometry and topology of,@i has been investigated by
several people. See for example Fischer [6].

Recall that the Einstein equations of general relativity
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state that, outside of regions of matter; the metric tensor gaB
must be Ricel flat; i.e. RdB = 0. This is a complicated coupled
system of non-linear partial differential equations. One can regard
the Einstein equations as a Hamiltonian system of differential equations
on ,ci in an appropriate sense. This idea goes back to Arnowitt,
Deser and Misner [1] but was put into the setting Of,zi, explicitly
using infinite dimensional manifolds by Fischer-Marsden [8].

- The abéve applications.to general relativity can be regarded
as "soft" in the sense T that infinite dimensional
manifolds are involved mostly as a language convenience and as a guide
to the theory's structure. While this is important, it is perhaps not
critical to the development of the theory.

The first substantial "hard" theorem using infinite dimen-
sional analysis (at least in an informal way) is due to Brill ana
Deser [3]. They establish the important result that any noh-trivial
perturbetion of Minkowski space leads to a spacetime with strictly

positive mass (or internal gravitational energy). The technique they

use is an adaptation of methods from the calculus of variations. The
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idesa behind the proof is rather éimple; they show that on the space of
solutions to Einstein's equations, the mass function has a non-degenerate
critical point at flat, or Minkowski, space. Their investigations have
inspired a ﬁumbef of recent results; cf.[10], [13] and [15].

An important feature of the work of Brill and Deser is that
the infinite dimensional techniques employed are natural, useful and
indispensible.

Another fundamental problem in general relativity which hés
been solved using techniques from global analysis is that of lineariza-

tion stability. This problem may be explained as follows. Suppose we

have a given spacetime, for example the Schwarzchild metric, and then

- wish to consider a slightly perturbed situation; for instance the intro-
duction of a slight irregularity or a small planet. To consiéer.§gch
situations directly is not easy because of the non-linear nature of
Einstein's equations. Instead, it is common to linearize the equations,
solve these linearized equations,and assert that the solution is an
approximation to the "true" solution of the non-linear equations.

It is perhaps surprising that the assumption made--that the
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solution of the non-lineap equations approximates the solution of the
full equations--is not always valid. Such a possibility was indicated‘
by Brill [2], and has been established rigorously by the authors in

3 X R where T3 denotes

the case the universe is "toroidal"; i.e. T

the flat 3-torus. If the above assumption on the given spacetime is

valid, that spacetime is called linearization stable.

Our théorem below shows that Brill's example is exceptional
and that most spacetimes can be expected to be linearization stable.
Although it would be unpleasant if this were not so, the example and
the delicacy of the result show that caution is to be exercised when

such sweeping assumptions are made.

Theorem. Suppose that the ('"background") spacetime with metric tensor

gaB satisfies the following conditions: there is a space like

hypersurface M with induced metric g and second fundamental

form Kk such that

(i) there are no infinitesimal isometries X of both

g and k (ii M 1is not compact, X 1is required to vanish at

infinitx)
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(ii) if k=0 and M is compact then g is not flat

(iii) if k # 0, tr(k) = trace of k is constant on M if

M is compact, and tr(k) = 0 if M is non-compact.

(iv) if M is non-compact, g is complete and in a suitable

sense asymptotically Euclidean.

Then neaf M, the spacetime metric gaB is linearization
stable.

Brill's example fits in because condition (ii) fails for
M= T3, the flat 3-torus.

The following corollary was obtained by Choguet-Bruhat and

Deser [5] independently of the authors.

Corollary. Minkowski space is linearization stable.

Although the proof is complicated in details, we can endeavor
to give the main ideas here. It is a simple and elegant applicafion of
the theory of infinite dimensional manifolds.

In order to solve the Einstein equations, one can regard
them as evolution equations with g, k (as given in the statement of
the theorem) as initial, or Cauchy, data. However there are somé non-

linear constraints involved called the‘divergence constraint, written
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8" = 0 and the Hemiltonian constraint # = 0 which g, k must
satisfy. This defines a certain non-linear subset d: of T77, +the
space of all g's and k's on M. The principal method is the fol-

lowing: near those g, k for which the conditions of the theorem

are satisfied, the set 'éf is & smooth infinite dimensional submanifold

of the space T7ﬁﬂ The other points are.singular.

The smoothness of the set éf entails that tangent vectors
to é: are closely approximated by points in C: itself (which would
not be the case.if Z:’ has corners or other singularities). This
remark together with existence theoréms for the Einstein equations
(ef. [4], [9]) yields the desired result.

Fortunately, establishing the smoothness of é: can be
done by techhiques which have been previogsly developed in infinite
dimensional manifold theory (these are found in, for example, Lang
[12]).

We suggest that there are several other problems which can
be attacked by the methods of infinite dimensional analysis. Specif-

ically we suggest the following
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(a) rigorously establish the claims made in Brill-Deser [3]
concerning the global positivity of the mass function

(b) stﬁdy conditions on initial data which guarantee
conditions under which the resultant spacetime will be free of singular-
ities and hence free of black holes (ef. [13])

(¢) study stability properties of solutions to Einstein's
equations, in the same sense as the solar system is stable in classical
mechanics.

It seems, in view of our experience in these matters, that
such goals for the immediate application of global analysis techniques
are not unreasonable ones.

The techniques of global analysis are appropriate for general
relativity because of the non-linear nature of the problems involved.
Since the field equations are non-linear, the spaces of solutions will
also be non-linear and so infinite dimensional manifold techniques are
appropriate for their study. There is a promising future for the
development of this bridge between non-linear analysis and general

relativity.
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