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Abstract

We explore the meaning and consequences of "gauge invariance
of the second kind" as applied to the theory of gravitation., This
generalizes the usual Lorenk invariant theories to theories which are
covariant in the sense of genaral relativity as well as scale invariant.
We are led to a formulation which on a macroscopic scale leads to
Binstein's theory but with a self consistently determined coupling cons-
tant., It is also possible that the origin of the masses of the elementa-

ry particles is founded in this formulation of the theory.
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The two branches of field theory which have been crowned
by complete quantitative success are the theories of electrodynamics
and gravitation, In this essay we wish to emphasize two important
features of electrodynamics which can be incorporated in a fundamen-
tal way into the theory of anvitatim. These are gauge invariance
of the second kind and invariance under scale length. These principles
in addition to leading to the usual covariance of general relativity
also imply the vanishing of the cosmological constant and the possibi-
lity of mass originating in the gravitational field.

We briefly review gauge invariance of the second kind in
Quitum electrodynamics. A charged particie may be represented by a
complex field xP o The local charge density «70 . t/) is in-
variant under a transformaticn of phase (70 - f70 e ix « £ Y is
a constant this is called gauge invariance of the first kind which
already hu a consequence conservation of local charge. This conserva-
tion, however, is destroyed if Y is allowed to depend on space
time x . It may be restored by introduction of a new field coupled
to the charged particles through the minimal electromagnetic coupling -
(é.e,,}_; B«__eg/}«). No experiment has yet been shown
to be in disagrement with this theory and its quantitative success is
one of the great achievement of modexrn theoretical physics.
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Turning now to the gravitational field, let us for the sake
of simplicity consider a real, spinlass boson field ‘¥ * mhmis nas an
unperturbed lagrangian density (we use standard sommation convention)

Y= 24 2% 4 wiypy (1)
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Such an expression is invariant under Ilorentz transformations and
this implies conservation of energy and momentum, However just as
electrodynamics was founded on the principle of extending the gauge
group from global to local, we wish to extend global Lorentz invariance
to local Lorentz invariance. Before speculating on the philosophical
interpretation of this assuption, we first present some of its elemen-
tary conseduences.

Energy is no longer locally conserved but will be restored by
the invention of a new field. Consider an inhomogeneous non uniform
transformation x/ft - xS+ a/‘ (x)

This induces a transformation in the derivatives containing both an
antisymmetric and a symmetric part corresponding respectively to a
rotation of space~time and to a strain’

a'a;/t"’;%ﬂ R A 2
(2)
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h as defined by (1) is not invariant under the strain. This neces-
/(.Y'

sitates introducing a symmetric tensor field 3’ coupled to equa-

tion (1) in the following way

¥ - 3"5%5/9*315‘?']@ SR 467 (1)

vhere the indices of g/‘ ¥ transform contravariantly to the gradient

Having established in this way the existence of the tensor
field 9/" and its coupling to matter, we now must look for its
equations of motion. In addition to 3/  itself it is then neces-
sary to construct other tensors which may be contracted to scalars
in ordexr to form a Lagrangian density. The technique for doing this is
found in a classical article by Yang and Mille'2), Their method is rea-
dily applied to our field g/‘ ¥ and one proves that the qQuantity R /"- vA

is a tensor where

v o~ . / - /—’r) /7/0'

- Vi PR Yair? B AdoW A Ly (3)

Rurd = 5 TF e

/"/';, is a non tensor field which is necessarily introduced in the

formation of a tensor involving derivatives. A prescription will be
- v

stated latex to express /7/" in terms of ﬁ/‘ « In the conven-

tional Binstein theory these turn out to be the Christoffel symbols.
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Before discussing the free field Lagrangian, we wish at this
point to speculate on the meaning of extended lorentz invariance. It
is customasily asserted that a free particle travels in a straight
line, howevexr upon further exmmination of this pmpo-ition oche sees
that it is a tautology for it defines either what is a free particle
(if one assumes prior knowledge of what is a straight line) or a
straight line (if one knows all about fres particles). Thus to describe
free particles it is required to have an a priori geometxy which may
be chosen arbitrarily to be a flat (Minkowskian) space. This choice has
the immediate implication through translational invariance of space and
time that energy and momentum are conserved. This conservation law
at this stage of the argument follows by definition. In order to es-
cape the tautology while remaining consistent with the arbitrariness
of this description, we must

1°) allow any departure of energy conservation by allowing
any departure from Lorentz invariance.

2¢) restore snergy conservation by interpreting this departure
as due to a new agent ("field®) acting in flat space such that with this
new agent snergy is again restored.

Any scalar density formed from the jﬂ/ and w;fw\
may bs used as a free lLagrangian density. If "simplicity” is the only
guide one may take advantage of the existence & scalar /X obtained
by contracting 3,/“) and j/ « This constitutes an essen
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tial difference between the theoxy of gravitation and that of electro=-
magnetism where the field tensor F)‘tV' cannot be contracted. The

resulting Lagrangian
/[‘/’3‘ R+ ] olt (4)

Ylelds , after independant variation of G/"and " /tr Einstein's
field equation coupled to matter,

This lagrangian is subject to criticiasm from our point of view
of gauge invariance. Indeed R  has dimensions (length) -3 and there~
fore the coupling with matter will involve a coupling constantwith
dimension ¢ 1ength)3 {the zo called gravitational coupling constant). But
as owr reference geometry is entirely arbitxary, ites scale is also ar-
bitrary, thus the coupling constant with dimensions may be varied at
will, It is only possible to escape such a contradiction if the coue~
pling constant , as in eiectrodynamics , is dimensiondess . This may
be done by edimensiondess coﬁpling of g/‘ " to some kind of new
field much as an intemmediate boson can be introduced to eliminate the
dimensionality of coupling constants in weak interactions. However here
the possibility also arises that this new field be the gravitational
field itself; in the remaining we will discuss this latter possibility.
This reQuires that the free Lagrangian L, be constituted from the three

texrms

, /“ ox
VG R e 5 Vg R R ds [ R R



These terms were first studied by rauli’?) ana my.‘;“) and recently

revived by hm:‘” « Generalizing the gravitational theory to include

- electromagnetic effects involves the two latter tm"” « Restricting

ourselves to a pure gravitation theory we shall then only consider the
first term, Note that by scale invariance no constant term may arise
in the lagrangian, vhich means that a cosmological constant - cannot
exist. Further such a texm would be the manifestation of a constant
matter density because it would appears in L' on the same footing as
m (P (P / for this there is no physical justification.

We thus are led to the Lagrangian
L zj [Vg; :R.{ + Q(fa,J ol ¥ 2 (3)

The £ree field equations obtained from (5) differg from those obtai-
ned by Pauli and others because from the gauge point of view the 2/“ ’
must be varied independantly of the P‘:“'" . The resulting free egua~
tions are identical to one of those derived by Stephenson (), me
coupling term, however, suggests & natural new interpretation. To see
this we first write the equation of motion in the following suggestive
form

(gr/R ) = ©

(6)

oy 4 VR = -
3?7"' (gr77) -4 8" +* (M



where '7}“, is the matter enexgy momentum tensor.
The essential feature of equation (7) is that it has zero
trace so that coupling with mass terms is impossible. A consistent in-
terpretation is however that these equations describe a unified thaory
of gmifitatim and mass with "R proportionnal to the mass density.
The coupling is then only with particles with zero ba_fimlss. In gene~
ral one may interprete (6) as defining a Riemamn space renormalized by
its own curvature which is the mass density (note that the free field

Lagrangian density is the renovrmalized volume element @3_“ = V! g/ﬁl

When "l;,, " vanishes equaticn (6) (7) yields all results
of Einsteinian general relativity on a planetary scale, However on an
averaged galactic scale one has a variation of the effective gravitational

constant because of the variation of R .

On the elementary particle level, 2 possible interpretation
is that the gravitational equation coupled to bare fields contains solu=-

tions vhich give rise to the masases of the elementary particles,

We close by summarizing our point of view. Through our analysis
of the logic of gauge invariance of the second kind as applied to gra-
vity, we are led to chose an equation for the gravitational field that has
the following properties

a) no cosmological constant appears
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b) it reduces to Einstein's equation on the macroscopic scale

but with a self consistant gravitational coupling constant,

c) it provides a possible theory of the origin of mass
through the gravitational field.
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