‘ﬂ.

GRAVITATIONAL INSTANTONS
by
Tohru Eguchi
University of Chicago, Chicago, IL
and
Andrew J. Hanson

Palo Alto, CA

1979 Gravity Research Foundation Essay

SUMMARY

The path-integral approach to quantum field theory assigns special

importance .to finite action Euclidean solutions of classical field equations.

~ In Yang-Mills gauge theories, the instanton solutions of classical field

-equations with self-dual field strength have given rise to a new, non-

perturbative treatment of the quantum field theory and its vacuum state.
Since gravitation is also a species of gauge theory, one might think that
similar phenomena would occur in gravity. The authors recently sought and
found a new self-dual solution to Euclidean gravity which plays a role
parallel to that of the Yang-Mills instanton. Gravitational instantons now

promise to yield new insights into the nature of quantum gravity.



BIOGRAPHICAL SKETCHES

Tohru Eguchi was born in Tokyo, Japan, in 1948. He attended the

University of Tokyo, recetving his bachelor's degree in 1970 and a Ph.D.

in theoretical physics in 1975. He has held positions at the University
of Chicago and S.L.A.C., and is currently an Assistant Professor of Physics
at the University of Chicago. His work was mainly dealt with particle

physics and relativity theory.

Andrew J. Hanson was born in 1944 in Los Alamos, New Mexico, and grew

up in Urbana, I11inois. He graduated from Harvard College in 1966 and
acquired a Pn;D. in theoreticé] physfcs from M.IfT. in 1971. He has held
positions at the Institute for Advanced Study, Cornell University, S.L.A.C.,
Exploratorium Science Musium, the Lawrence Berkeley Laboratbry and the Univ.
of California at Santa Cruz. He is now employed as a Project Scientist at

the Institute for Advanced Computation, NASA-Ames Research Laboratory.

He has worked on a variety of subjects, 1n¢1uding particle theory, gravitation

and differential geometry, constrained Hamiltonian systems, image understanding

~and human-computer interactions.



TREE

GRAVITATIONAL INSTANTONS
by
Tohru Egquchi
University of Chicago, Chicago, IL
and
Andrew J. Hanson

“Palo Alto, CA

1979 Gravity Research Foundation Essay

SUMMARY

The path—integra] approach to quantum field theory assigns special
importance td finite action Euclidean solutions of c1assica] field equations.
In Yang-Mills gauge theories, the instanton solutions of classical field

equations with self-dual field strength have gfven‘rise to a new, non-

perturbative treatment of the quantum field theory and its vacuum state.

Since gravitation is also a species of gauge theory, one might think that

sfmi]ar phenomena would occur in gravity. The authors recently sought and

~ found a new self-dual solution to Euclidean gravity which plays a role

parallel to that of the Yang-Mills instanton. Gravitational instantons now

promise to yield new insights into the nature of quantum gravity.



INTRODUCTION

Einstein's theory of gravitation is one of the most beautiful étructures
of classical relativistic physics. Being a c]assica1‘fie1d theory, however,
gravity has proved to be very difficult to be incorporated in the context of
modern quantum fiéld theory. The desire to treat gravitation as a quantum
field resembling other elementary quantized fields has led to many attempts
to understand quantum gravity. None has been completely successful.

Nevertheless, a number of illuminating insights concerning the structure
of quantum gravity have been obtained using Feynman's path integral approach

to quantization.1

The path integral has the well-known property that it can
be—eva1uated.unambiguously only for.Euc1idéan imaginary time, although the
results are continued back to the Minkqwski regime. ApproXimations to the
path integral quantization for a theory can therefore be developed first by

. examfning classical Euclidean solutions of the theory and then making a
systematic perturbative expansion around these solutions. Since the wéight
of a given path in the path integral is proportional to the exponential of
minus the action, the minimum-action Euclidean solution may dominate the path

integral. Quantum amp]itudes found by expanding around such a solution have

a good chance of being fairy accurate.



INSTANTONS

Onebexample of a minimum-action solution to a non-linear field theory
which has recently attracted a great deal of interest is the instanton
solution to the Yang—Mi11s equations found by Belavin, Polyakov, Schwarz and
Tyupkin.2 This solution is called in instanton because its Yang-Mills field
strength is concentrated around one point in four-dimensional Euclidean
spacetime. In the distant past and distant future, the. field strength
vanishes: a bump in the field strength appears for an instant of time, then

dies away.

The instanton solution arises in an intriguing fashion. First one

examines the Yang-Mills equations

BuFuv + [Au’ Fuv] =0 (1)

and the identity
€ gy 0aFpy ¥ [Ays Fgyl) = 0 (2)

which follows from the definition of the field strength

Fu v - auAv - a\)Au + [Ap, Av].



Then one observes that if Fuv is self-dual or anti-self-dual,

=+ F =

» 1
Fav w = * 2 Suvap Fag | (3)

the identity (2) implies that the Yang-Mills equations (1) are satisfied.
Furthermore, one can show that field strengths satfsfying equation (3) are

absolute minima of the Yang-Mills action.

Now we notice that equation (3) contains only first derivatives of the
potential Au’ and yet it implies the solution of equation (1), which contains
second derivatives of Au' Thus in this special case it is possible to reduce
the Yang-Mills equations to a first-order differential equation. Suppose one

chooses the Ansatz

= SR [ : |
= o) a7 S | (4)

for the SU(2) Yang-Mills gauge potential, where 2=t ?2, g=(t-it-x)/r
and {T} are the Pauli matrices. Then if we require the fieldbstrength to be

self-dual, Fuv = ?Lv, we find the first-order differential equation

d (r.

dr *

=S |™N

(p-1)p=0 (5)



with the solution

o(r) = r2/(r? + %), ‘ (6)

The potential Au given by equations (4) and (6) is the instanton solution to
the Yang-Mills equations, which produces a self-dual field strength Fuv

concentrated at r = 0 and falling off in all directions like 1/r4.

The physical implications of the instanton are profound. It provides a
new nonperturbative starting point for the path-integral quahtizatidn of Yang-
Mills field theory. Perhaps the most striking consequence of the instanton is
the fact that the Yang-Mills vacuum has an infinite]y periodic structure:
the true vacuum is a superposition of an infinite number of eqUiva]ent vacuum
states.3 The instanton attioh-gives a first abproximation to the tunneling
ampTitude between two adjacent vacuum states. Since instantons carry non-trivial
topological quahtum numbers, these tunneling amplitudes break various symmetries
of the theory. In particular there exists a zero-energy solution to the Dirac
equation in the instanton field and this causes a non-conservation of the nineth
axial vector current and the breakdown of‘chira1 U(1) symmetry.4 Instantons

also possibly generate CP violation and baryon-number non-conservation.

The existence of spin 1/2 zero-mode in the instanton field is a consequence

of a mathematical theorem, the Atiyah-Singer index theorem,5 and is ultimately



traceable to the deep relationship between Yang-Mills theory and the

differential geometry of fiber bundles.®

SELF-DUAL SOLUTIONS OF EUCLIDEAN GRAVITY

Theifact that}Yang—Mi]]s theory and its instanton solutions are intimately
related to geometry suggests that we examine the other major link between
geometry and physics, i.e. Einstein's theory of gravitation. By exploring a
number of parallels between Yang-Mills equations and Einstein equations, the
present authors were able to discover a new solution of Euc]idean»grav{ty7

which strongly resembles the Yang-Mills instanton.

The gravitational instanton can be derived in the following way:

First, consider a Euclidean metric guv decomposed into vierbein one-forms

e? = eaudxu as

2

: 3
= My Vo ay2
ds guvdx dx Y (e) v (7)

a=0

and recall that the spin connection one-form Wap is determined by

b ,
de? + w, Ae = 0, Wop = = @ - (8)



Then note .that self-duality (or anti-self-duality) of the spin connection

one-form,

—

N
= +

Yab ab = * 2 €abed Yed )

implies self-duality of the curvature two-form,

-—l

Rap = d Wap + W A Ocp = RabcdeA e _ (10)
But self-duality of the curvature two-form,

Ryp =+ K ab = §' €abcd Red - (11)

together with the cyclic identity ey R p 4 = 0 imply that empty space
Einstein's equations are satisfied. Thus equation (11) is the gravitational
analog of the fact that self-dual Yang-MiT1S field strengths satisfy the

Yang-Mills equations.

Now we observe that equation (9) contains only first derivatives of the
metric while implying the validity of equation (11) and hence Einstein's
equations. This means that we will be able to reduce Einstein's equations to

a first-order differential equation, analogous to the Yang-Mills case.



A11 that.is needed now is a good guess for the metric to play the rote
of equation (4). An obvious tactic is to study the flat metric in four-
dimensional polar coordinates,

ds2 = dr2 + r2 (ox2 +0 2 4 o 2)

Yy Y4

were
g, = %—(sin? de - Sjne éosw d¢)
oy.= %—‘-cos& de - sind siﬁw do)
o, = %1( dy + cosé d9)
0s06<m, 05 ¢ <2m, 0sy< LU (12)

We then examine the following modification of the flat metric:

2

2 2 2 2 2
ds® = f°(r)dr® + r (ox + oy

+ g°(r)?) . (13)

A straightforward calculation shows that the spin connections w,p, are anti-

self-dual if f(r) and g(r) obey the first-order differential equations



fg=1
g+r -5 (2-q°. - (19)

The solution of these equation is

2 = £ =1 ()t o)

Thus the metric7

ds? = [T - (a/r)4}-]dr2 + r2(0X2 + oyz +[1 - (a/r)4]g22) — (18)
satisfies Einstein's equations with anti-self-dual curvature.

One must of course check that the manifold defined by the above metric

is geodesically complete. One finds that all is well provided the range of y

is changed to8

0s¢<2m. (17)

This means that at «, the coordinate xu is identified with its TP conjugate
partner —xu. Except for this identification, the metric approaches a flat
space metric at ©. The manifold's natural origin is at r = a, where the metric

is in fact regular and there is an instanton-like bump in the curvature.
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The new gravitational instanton metric (16) is now known to be the first

of a family of multiple-instanton metrics discovered subsequently by Gibbdns

and Hawking.g These interesting metrics have been shown by Calabi'® and by

Hitchin'!

to arise in a natural mathematical context.
We now turn to the physical meaning of the gravitational instanton metric
(16). 1In the first place, since the metric satisfies Einstein's empty-space

equations, its scalar curvature and classical action vanish. Therefore the

~ gravitational instanton gives a dominant contribution to the path integral as

important as the contribution of the flat metric itself. Secondly, since the

- metric approaches that of a flat space at ~ modulo an identification, it makes

contributioné'to the asymptotic scattering states of conventional quantum. _
field theory and causes a certain type of_symmetry violation. Per'r.y]2 hasbointed
out that the simplest non-trivial amplitude induced by the gravitational
instanton occurs in the partié]e four-point function. He has shown that in

the electron-positron scattering process - incoming.e1ectrons are transformed
by an instanton into outgoing positrons with reversed helicity. This phenomenon
is the TP reversal which takes place as a particle passes through an instanton
field (recall that xu had to be identified asymptotically with its TP conjugate

-xu). We also remark that while the gravitational instanton does not contribute

to the zero-frequency modes of a spin-1/2 Dirac particle, it does produce zero-

13

frequency solutions of the spin-3/2 Rarita-Schwinger equation ~ and thus

possibly breaks chiral U(1) symmetry.
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Thus our gravitational instanton solution (16) of the Einstein equations
bears a remarkable resemblance to the instanton solution of Yang-Mills theory.

We may summarize the parallels in the following table:

Yang-Mills ' Einstein
solution of Ref. 2 | solution of Ref. 7
self-dual field strength (Anti)-self-dual curvatﬁre
Field-strength bump at origin Curvature bump at origin
Au > pure gauge at o | guv % locally f]af-spéce at =
No singularities : Gebdésica]]y complete
Finite action’ Zéfo action |
CP-changing amplitudes TP-changing amplitudes
Spin-1/2 zero-frequency modes Spin=3/2 zero—frequencybmodes

CONCLUSION

New insights into the nature of relativistic quantum field theories will
be gained by path-integral quantization methods. In particular, the expansion
of the path integra1 around minimum-action solutions will prove to be a powerful
tool in the analysis of non-linear field theories. Just as the instanton
solution of Yang-Mills equations has led to a deeper uhderstanding of the
theory, the gravitational instanton we have presented here promises to play

a similar role in quantum gravity.
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