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Summary

The spherically symmetric vacuum stress-energy tensor with one assumption concern-
ing its specific form generates the exact analytic solution of the Einstein equations which
for large r coincides with the Schwarzschild solution, for small r behaves like the de Sitter

solution and describes a spherically symmetric black hole singularity free everywhere.
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Tiny fish is better than a big cockroach
Russian folklore

The year 1917 went down in history not only as the year when Lenin seized power in
Russia to put the Marx doctrine into practice but also as the year when de Sitter published

his cosmological solution!
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where rZ = 3/A, with the cosmological constant A responsible for the geometry. During
several decades the physical essence of this solution remained obscure. In modern physics
it has been mainly used as a simple testing ground for developing the quantum field
techniques in curved space-time.

In fifty years people understood??* that the de Sitter geometry is generated by a

vacuum with nonzero energy density ¢ = Ac*/87 G, described by the stress-energy tensor
Taﬂ = €4ap, (2)

with the equation of state
p= —¢. (3)

From the conservation equation T‘;ﬁ = 0 it follows that ¢ = const hence p = const and the
stress-energy tensor (2) describes the isotropic vacuum.

At the beginning of the 80's it became known that a physical state with the stress-
energy tensor (2) and equation of state (3) can arise in Grand Unified Theories at very
high densities corresponding to the characteristic GUT energy ~ 10'°GeV. Now this state
and the de Sitter geometry are broadly used in the cosmological inflationary scenarios

describing the very early epochs in the history of the Universe.?
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Here I shall try to show how the de Sitter solution and the physics underlying it
can shed some light also on one of the most dramatic physical problems - the problem of

singularities.

The vacuum is defined as such a kind of matter which does not allow any preferred
reference frame connected with it. Therefore any reference frame is comoving with the
vacuum, and this property holds not only for the standard vacuum T, = 0 but also for
the isotropic vacuum described by the stress-energy tensor (2)?:3%. There exists however
another possibility.

In the spherically symmetric case T2 = T5 with all the mixed spatial components

equal to zero. The stress-energy tensor with the canonical algebraic form
T2 =T} and Ty =T, (4)

according to the Petrov algebraic classification’ has an infinite set of comoving reference
frames?. Hence, it can be interpreted as the stress-energy tensor describing the spherically
symmetric vacuum. In general this vacuum is anisotropic.

From the Petrov classification scheme it follows that there exists only one type of the
algebraic structure of stress-energy tensor describing the spherically symmetric vacuum.

Let us consider what geometry can be generated by the spherically symmetric vacuum (4).

The best known spherically symmetric solution of the Einstein field equations is the

Schwarzschild metric
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where
2GM
T‘y = 02 ’ (6)

and M is the mass of a source measured by a distant observer. The Schwarzschild geometry
describes the gravitational field of a spherical mass in empty space outside the mass.

Historically it was found by Schwarzschild as the solution of the Einstein equations for a
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point mass®. This metric is used to describe the result of a gravitational collapse - a black
hole - in the situation when the angular momentum of the collapsed star as well as its
electric and magnetic charges are zero. In this case the stress-energy tensor responsible for
the geometry is equal zero everywhere except a singular point at r = 0, where the energy
density is infinite®. All invariants of the Riemann curvature tensor also tend to infinity at
r — 0 and the standard notion of space-time geometry loses its sense at the singularity®.

Let us show that the spherically symmetric vacuum can generate a black hole solution
which is regular at 7 = 0 and everywhere else.

The general spherically symmetric metric has the form
ds? = e’ c?dt? — e dr? — r(d8? + sin?8dp?). (7)
Because in our case T{ = T, the Einstein field equations give
o\  Ov
— 4+ == .e. A = f(1).
3r+6r 0, e tv=f0)
Without losing generality we can rescale time in such a way to get A + v = 0. Now we

have to make one assumption concerning the specific form of the stress-energy tensor (4).

If we assume that
3

-
Ty =T} =€ exp (——5—), (8)
0'g

where ry is connected with €9 by the de Sitter relation
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then the standard formula for the mass®
m(r) = i—:/ Toridr, (10)
o ,

gives at r — oo the whole mass M connected with r, by the Schwarzschild relation (6).
Integrating the Einstein field equations with the assumed form of 79 = T} we obtain
the following metric

dr?
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R
ds? = (1 - #)czdtz - r(d6” + sin® §dp?), (11)
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where
3
Ry(r) = ro(1 - exp(~5)), (12
and

rd =rir,. (13)

This is the exact spherically symmetric solution of the Einstein equations which for r > r,
practically coincides with the Schwarzschild solution and for r < r, behaves like the de
Sitter solution.

From the Einstein equations we derive the remaining components of the stress-energy

tensor
3 3

3r r
T2 _ T3

2 3 = 60(1 - ZTE)exp(_TE )' (14)
As follows from (8) and (14), our spherically symmetric vacuum is really anisotropic. The

difference between the principal pressures
_ k
Dk = _Tk ’ (15)

corresponds to the well known anisotropic character of evolution of the space-time inside
a black hole undergoing a spherically symmetric gravitational collapse!®. For r < r,
isotropization occurs and the stress-energy tensor takes the isotropic vacuum form (2).
When r — 0 the energy density tends to ¢g . For r > r, all the components of the
stress-energy tensor very quickly tend to zero.

Let us now discuss the main properties of our solution. The difference between Ry(r)

and rg is 74 exp (—r2/r$). The difference between m(r) and the Schwarzschild mass M is

Mo — expl- o, (16)

For an object with the mass of several solar masses and ¢y corresponding to the GUT
energy ~ 10'5GeV the characteristic radius of the metric (13) r. ~ 107'7cm. Then the
difference between m(ry) and M is given by M exp (—10°8) ~ 107%¢g! Increase of mass
and/or €g leads to decrease of this quantity.

The metric (11) has two event horizons located approximately at

ry Ryl — O(exp(—rg/rg))]; r— X ro[l — O(ro/4ry)). (17)
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Here ry is the external event horizon. Because goo(r+) = 0, the metric (11) describes an
object with the same properties as seen by a distant observer, as those defining a black
hole: it does not send any signals outside and interacts with its environment only by its
gravitational field. The internal horizon r_ is the Cauchy horizon!!. Both r4 and r_ are
removable singularities of the metric. They can be eliminated by an appropriate coordinate
transformation. In the coordinates connected with the freely falling particles the metric

takes the Lemaitre type form
ds? = c*dr? — _Rg(r) dr? — r%(d8? + sin’ 8dyp?), (18)
T

(lim,—o(Ry(r)/r) = 0) that is regular both at r and r_ as well as at 7 — 0, but is
not complete. To find its maximal analytic extension one should introduce, following
Chandrasekhar!!, the isotropic Eddington-Finkelstein coordinates in which the solution
(11) is given by
2 Ry(r) 20302 4 12 2
ds* = |1 — ——=|dudv — r*(df* + sin” 6dp”). (19)

T
Its maximal analytic extension is obtained in a standard way and it is similar to that for
the Reissner-Nordstréom space-time with the essential difference that it is regular at » = 0.
So the solution presented here is nonsingular everywhere.

The quadratic invariant of the Riemann tensor R? = R,p,5R*?7® has the form

R2(T') 3 —p3 /3 R (T‘) 2R (T‘) 9r3 —r3/y3
R:=4 16 +4(¥e Ire _ -;{TY +(—5— - e /)2, (20)

For r — 0 7R? remains finite and tends to the de Sitter value R2 = 24/r% which naturally

appears to be the limiting value of the space-time curvature. All other invariants are also

finite.

Now let us return to the switch role played by the vacuum in the singularity problem.

Inevitability of singularity as the final state of a collapsing massive body results from
theorems on singularities proved by Penrose, Hawking and Geroch in the second half of
the sixties!? (for the extended list of references see!®). One of the conditions on which

singularity theorems are based is the strong energy condition!® which states that for every
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timelike vector u®

(Top — -;-gaﬂT)uo’uﬂ > 0. (21)

This condition guarantees that the matter described by the stress-energy tensor satisfying it
does not prevent monotonic decreasing of expansion of congruences of timelike geodesics. In
other words, it means that in a gravitational collapse when the gravity becomes dominating
it leads to an unlimited contraction.

One way to avoid singularity during a gravitational collapse was proposed by Gliner?4
who suggested that at very high densities such that all kinds of particles lose their identity
matter undergoes a transition into a vacuum like state described by the stress-energy tensor
(2) and the de Sitter geometry (1). The very important feature of the de Sitter geometry
is the divergence of the geodesic congruences. In this case gravity acts in such a way that
the trajectories of the freely (along geodesics) moving test particles behave so as if they
were repulsed from the center!®. Having this in mind Gliner suggested that if a vacuum
like physical state is achieved during a collapse then further contraction could be stopped
and such a vacuum like state could be a final state in a gravitational collapse instead of a
singularity.

Several people tried to eliminate the singularity by replacing it at the Planck scale
curvature by the de Sitter geometry (Starobinsky!®, Markov!?, Bernstein!®, Poisson and
Israel!®). According to Poisson and Israel, the transition from the Schwarzschild space-
time to the de Sitter space-time is possible but ”it is necessary to interpose a layer of
non-inflationary material at the interface”. The space-time generated during spherically
symmetric gravitational collapse can be described by the Schwarzschild vacuum solution
down to the quantum barrier. Below this barrier may exist a layer of "uncertain depth
in which the geometry remains effectively classical and governed by field equations of the

form

G"” = 8nT*(vacuum polarization) ~ R?-- - (22)

representing one-loop vacuum polarization effects of the gravitational and other quantized

fields” 19,

Recently Frolov, Markov and Mukhanov?® have proposed a nonsingular black hole
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solution obtained by matching the Schwarzschild metric with the de Sitter metric at some
spacelike surface layer located at the radius r; < r,. This matched solution has in general
a jump at 7. "This jump results from the author’s ad hoc assumptions that i) in the
matching layer of thickness Al ~ Ip; ~ 10733cm located at r; > rp; the equation of
state p=0, € = 0 has to change to the equation of state p = —e with € ~ epy; ii) in this
extremely thin layer a nonzero anisotropic stress-energy tensor has to be created and then
its isotropization has to occur, all this during the Planckian time At ~ tp; ~ 10™*3sec, i.e.
practically by a jump.

The exact analytic solution (11) represents a black hole which contains the de Sitter
vacuum world instead of a singularity. The stress-energy tensor responsible for geome-
try describes a smooth transition from the standard vacuum state at infinity to isotropic
vacuum state at 7 — 0 through anisotropic vacuum state in intermediate region, what
agrees with the Poisson and Israel prediction concerning "non-inflationary material at the
interface”. At present such a transitional material cannot be described starting from any
fundamental theory describing reality at the microscopic level. Indeed, all quantum fields
give rise to a vacuum polarization (22) arising in the course of a gravitational collapse.
To obtain the appropriate stress-energy tensor representing effects of vacuum polariza-
tion created by all quantum fields in the framework of a microscopic theory, we need an
appropriate Lagrangian but unfortunately today nobody knows how to write it down.

On the other hand, the stress-energy tensor (4) undoubtedly describes the spherically
symmetric vacuum in the framework of general relativity. Its specific form (8) and (14)
has the appropriate asymptotic behaviour at r — 0 and r — oo. It generates the analytic
solution having necessary asymptotic properties and representing a spherically symmetric
black hole singularity free everywhere. Therefore, it seems to be natural to assume that
this tensor describes at the macroscopic level the vacuum polarization arising during a
spherically symmetric gravitational collapse.

If the final isotropic vacuum state of matter is achieved at the GUT energies ~
10'5GeV then the characteristic radius of the metric (11) 7, ~ 10™7cm for M ~ 10Mg. If
this happens at the Planckian energy then r, ~ 1072%cm. In both cases the characteristic

radius 7 3> rp; and hence the classical solution (11) adequately describes the transition
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to the de Sitter like limit. According to the Hawking-Penrose theorems on singularities!?

the energy condition (21) can be violated if the principal pressures are so negative that
S"pr < —e 9. For the stress-energy tensor (8) and (14) this inequality becomes valid just
as r3 becomes less than 2r3 /3 i.e. long before the transition to the de Sitter like and the

Planckian scale limits !

In conclusion I would like to note that according to (16) the mass contained under r,

is determined by

min = M(1 — exp(—rg/r(z,)). (23)

The difference between m;,, and the Schwarzschild mass M depends on the limiting internal
density €9 and this fact makes this fantastically small difference very important because
it means that investigation of physical processes occurring near the external event horizon

can in principle give some information about processes occurring deeply inside a black

hole.
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