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Abstract

It is shown that strong curvature naked singularities form in a non-self-
similar gravitational collapse of radiation. The imploding radiation space-
times with a general form of mass function are analyzed and we show that a
strong curvature property holds along all families of non-spacelike geodesics
terminating at the singularity in past. In view of the strength of singular-
ity and the non-self-similar nature of space-time, we believe this is a very
serious counter-example which must be taken into account for any possible

formulation of the cosmic censorship hypothesis.



The conjecture, that nature provides a built-in safety mechanism which
covers a space-time singularity formed during gravitational collapse from out-
side observers, is called the cosmic censorship hypothesis [1]. This remains
the most important unresolved problem in classical general relativity, and lies
at the foundation of the currently well-accepted and applied theory of black
holes. As yet, any attempts for a rigorous mathematical formulation and a
proof for the same have not been successful. Hence, the examples which show
the occurrence of naked singularities under various space-time situations re-
main important and must be analyzed carefully and in detail, as these would
provide indication for a possible formulation and proof for the censorship
hypothesis. Some of these examples describe shell-crossing singularities (see
e.g. [2]), but there are others describing shell focusing singularities which are
more difficult to ignore. Important examples of shell focusing naked singu-
larities analyzed so far are the dust collapse in marginally bound self-similar
Tolman-Bondi models [3], spherical self-similar collapse of an adiabatic per-
fect fluid with a soft enough equation of state [4], and the linear mass Vaidya
solutions for radiation collapse [5]. In fact, a detailed analysis of the radiation
collapse scenario has shown that the resulting naked curvature singularity is
extremely strong in the sense that curvatures diverge along all the families

of non-spacelike geodesics terminating at the singularity in past [6].

A feature that emerges from the present scenario is that much of the
presently available discussion on naked strong curvature singularities and
examples are confined to self-similar spacetimes only. Even though it was
implicit in the earlier work [3] that a Vaidya space-time with an initially
linear mass function can provide a non-self-similar space-time, somehow the
suggestion coming from the analysis so far is that the naked similarity is

related to some geometric property of self-similar spacetimes rather than
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gravitational dynamics of matter therein [3,4]. Now, self-similarity is a kine-
matic property of a space-time whereas natural formulation of gravitational
collapse would be in terms of an initial value problem. Again, self-similar
spacetimes are not asymptotically flat and hence do not provide a natural
background to model gravitational collapse of compact objects.

It is thus a matter of importance to learn if any serious examples of naked
singularities arise in non-self-similar space-time. The answer here would help
towards a better formulation of the cosmic censorship conjecture, which is
the first task at the moment requiring special attention.

The purpose of this paper is to show that strong curvature naked sin-
gularities occur in a non-self-similar collapse of radiation, and to analyze
the structure of the same. Our analysis on the structure here will mainly
focus on examining the strength of the naked singularity, as this provides a
very important indication of the seriousness of a naked singularity [7]. The
censorship conjecture, as originally proposed by Penrose [1] emphasizes on
the stability criteria for spacetimes. However, such criteria are extremely
difficult to formulate and test in general relativity, and hence Newman [8]
proposed the alternative formulation of the conjecture that naked singular-
ities must be gravitationally weak. The advantage with this formulation
is that various criteria to test the gravitational strength of singularity are
available and by applying the same one can analyze the structure of naked
singularity to deduce seriousness of a given example and thereby narrow the
choice of tenable conjectures.

The imploding radiation is modeled by the Vaidya space-time, given in

(u,r,8,¢) coordinates as,
ds® = — (1 - %(u)) du® + 2dudr + r2d0? (1)

where dQ? = d6? + sin® 8d¢?. The radiation collapses at the origin of the
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coordinates, u = 0,7 _ 0; where u is advanced time and M (u) is an arbitrary
but non-negative increasing function of u. The situation, when M is a linear
function of u (i.e. M(u) = Au, A = const.) has been studied extensively [5]
and it is seen that the radiation shells collapse to form a central singularity
which will be naked and persistent if the collapse is shﬂiciently slow. The

'energy tensor for the radial flux of radiation is,

1 dM

T., = a = —
ab = Phaks 47r? du

kokey (2)

with k, = —6 and kok® = 0. Note that dM/du > 0 implies that the weak
energy condition is satisfied. The Minkowski space-time for v < 0, M(u) =0
here is joined to a Schwarzschild space-time for w > T with mass M(T) by
way of the Vaidya metric (1).

We note that when M (u) has a linear form, i.e. M(u) = Au, A = const,
the space-time is self-similar admitting a homothetfc killing vector and the
- earlier conclusions on the formation of a powerful strong curvature naked
singularity‘are recovered. On the other hand, if M(u) has any other non-
linear form, the basic requirement of self-similarity (namely, g:(ct,cr) =
gu(t,r) and g,.fct,ct) = grr(t;t)) is not satisfied. It is this class of non-
self-similar spacetimes with general mass functions which is of interest to us
here. | |

Writing K¢ = dz®/dt as tangent to non-spaceiike géodesics, these quan-

tities for a general form of mass function M(u) are given [6] as below:

« du  P(u,r)
K== (3a)
dr 1MW >  Br
K= —= T _pP_ -
dk 2r 2rP + 2P (30)
[ cos
B 200 (3¢)

r2sin? @
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1sin 3 cos ¢
-

k¢ (3d)

where u = rX, ! is the impact parameter, 3 is the isotropy parameter given
by sin¢tan3 = cot  and k is the affine parameter along the geodesics. For
radial curves we have | = 0. The constant B characterizes different classes
of geodesics, i.e. B = 0 for null curves, B < 0 for timelike curves and B > 0

for spacelike curves. The function P satisfies,

P P? (1_4M(u)) 2 _g @

@&k "t r )Tt
The radial null geodesics in such a space-time are obtained from equa-

tions (3) and given by,
du 2r
B : )
dr  r—2M(u) 5)

In case M(u)|,—¢ # 0, the singularity is surrounded by an event horizon and
is not naked, which is a situation corresponding to an initial mass already
present at w = 0,7 = 0, i.e. shell collapse in a Schwarzschild background. On
the other hand the situation here is that of radiation injected into an initially
flat and empty region and focused into a central singularity of growing mass
by a distant spherical source. The source is turned off at a finite time T
when the field settles to a Schwarzschild case. It follows that the differential
equation (5) has a singular point at w = 0, 7 = 0. The nature of this singular

point can be analyzed by standard techniques[9] and writing

2 (dﬂﬁu))uzo — A (6)

the roots of the characteristic equation * — 7 + 2X = 0 for the equation (5)

are given by,
1++4/1-8A
n= — 9 (7)
It follows therefore that for 0 < A < 1/8 the singular point becomes a node

for the family of radial null geodesics and these curves meet the singularity
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with a definite tangent. When A = 0, the structure of the singularity is
somewhat complicated. It is not a pure node but could be a col-node where
some characteristics still pass through the singularity which will be naked.

This we will discuss here later.

Thus, the singularity in question for the space-times given by (1) is a
naked singularity for general mass functions defined by the above conditions.
This establishes the occurrence of naked singularities for a class of non-self-
similar spacetimes describing radiation collapse. It is of course possible that
the singularity can be locally, or globally naked. This can be distinguished
by an analysis of the critical direction associated with the node, i.e. exam-
ining the associated Cauchy horizon. For example, if r(T) < 2M(T') along
the Cauchy horizon, the node is only locally naked. However, we will not
elaborate on this because our main purpose here is to show the existence
of a naked singularity for non-self-similar gravitational collapse, and then to
analyze the strength of the same. It is not important whether the singularity
is locally, or globally naked; because either way it violates cosmic censorship
though in varying degrees of seriousness. When the singularity is globally
naked, its emissions are visible to far away observers and predictability is vi-
olated in the space-time. On the other hand, a locally naked singularity can
emit non-spacelike trajectories, however such causal influence never reaches
an asymptotic observer. Our intention is the analysis of strength in either

case.

In the linear-mass Vaidya solution, in addition to the radial null geodesics,[j
other families of non-radial non-spacelike geodesics also terminate at the sin-
gular point r = 0, v = 0 with a definite tangent and it was shown [6] that

along all such families of singular geodesics a strong curvature condition [7]
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is satisfied, namely,

lim k2R, K°K® > 0 (8)

Thus, the resulting naked singularity turns out to be strong in an extremely
powerful sense. The details and specification of the non-spacelike families
turn out to be quite complicated in the linear-mass Vaidya case itself and we
do not intend to discuss here the same for a general mass function in a non-
self-similar space-time. However, we present here the proof on the strength
of the singularity in this case which will generally apply to any family of non-
spacelike geodesics which meet the singular point v = 0,7 = 0 with a definite
tangent, and not just the null radial family. We show that along all such
families of singular non-spacelike geodesics, the strong curvature condition
(8) is satisfied.

Since for any family of non-spacelike curves meeting the singularity the
tangent is definite, it follows that du/dr is well defined at v = 0, r = 0.

Define the quantity X, as,

T U ) du
Y= tm (D)= bm G ©)
Using equations (3a) and (3b), this implies
2P
X : (10)

T PIH1-AXy) -2

where Py = lim, 9,0 P. In order to evaluate the strength, consider the
scalar 9 = R, K*K®, where K° is tangent to non-spacelike geodesics. For
the Vaidya space-time (1) we get using (2) and (3a) (k is an affine parameter
along the geodesic with k = 0 at the singularity),
2dM (u) k)’
Bl = 2\ p2 (2
4 du (7'2 ) (11)

8



Using equations (3a,b), (4), (6), (10), and the I’ Hospital’s rule, the limit in

(11) can be evaluated along singular geodesics as k£ — 0 and we get,

2
lim k4 = Ao for Py # 00 (12a)
k—0 4
lim k> =4Xx  for Py = oo (12b)

It therefore follows that for any positive value of A the above limit is always
positive and the strong curvature condition (8) is satisfied, except for the
case when Xy = 0. However, this last situation corresponds to P, = 0 at the
singularity. It is not difficult to see by integrating the geodesic equation (3)
near the singularity that if a non- spacelike geodesic is meeting the singularity
in past, this value is not realized along it.

We have thus shown that a serious example of naked singularity arises
for a general class of non-self-similar spacetimes, namely the Vaidya solutions
with a non-linear mass term, describing the gravitational collapse of radiation
at the centre.

We now discuss the case A = 0 in some detail, i.e. the derivative
dM(u)/duw vanishes at the origin. Then, as shown above, the curvature
condition (8) is not satisfied. This characterization of the strength implies
that in the limit of approach to the singularity, all volume forms along a
non-spacelike geodesic are crushed to zero size. (For a detailed physical in-
terpretation we refer to [7]). However, there are other useful ways in which
the strength of a singularity can be tested. One such important criterion
is to check whether it is a scalar polynomial singularity [10]. In the fol-
lowing, we show by means of an explicit example that when A = 0, even-
though R, K*K b does not diverge sufficiently fast, the Kretschmann scalar
K = R°*¥R,,.4 can diverge along a non:spacelike trajectory meeting the

singularity in past in the limit of approach to the singularity. Hence, a
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naked scalar polynomial singularity would result. It is not difficult to see
that this represents certain general features of the situation when M(u) is
initially non-linear and we analyze the structure of the same in some detail.

We choose here a non-linear mass function which vi.s representative of the
class M(u) ~ ™, > 1. The choice here is directed by the requirement that
the equation of outgoing non-spacelike curve from the singularity should be
simple, which helps towards an easier evaluation ‘of the Kretschmann scalar

K near the singularity. Consider M(u) defined by,
2M(u) = Au® (1 — 20du®"?) (13)

~where & > 1 and A > 0 is a constant. At v = 0, M(u) = 0 and we have flat
space-time. The null radiation starts i'mploding at w =0 till v = T where T

satisfies the condition, _
T ! < 2/\(—2(1_—1—) (14)
This ensures the positivity of dM(u)/duv and also that M(u) > 0. Thus
the weak energy condition is satisfied. At u = T we get the Schwarzschild
configuration with mass My = M(T).

The radial null geodesics are again given by (5) which has a singular
point at u = 0, r = 0. It is seen that for the mass function (13), an outgoing

radial null geodesic meeting the singularity in past is given by,
r = Au® (15)

This integral curve meets the singularity with a ﬁangent r = 0 and it is seen
that the singularity is naked.

Analyzing the nature of this singularity in general, it is seen that one of
the roots of the characteristic equation for (5) vanishes as a consequence of

(dM(u) /du)y=9 = 0. The structure of singularity therefore turns out to be
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more complicated than the case when M () is linear and further information
on the same can be obtained by writing (5) in the form (choosing M(u) ~

w*,a > 1),
dR ve-!
a” " _ AR —
U i R

+0(R,U) (16)

Here U = v — 2r, UR = r, A is a positive constant and O(R,U) contains
terms of order higher than one. It is seen that [9] the behavior of integral
curves depends on the nature of . When « is even, the singularity exhibits
a col-node structure, i.e. given a neighbourhood of the singularity, it behaves
like a col for integral curves in a certain region of (u,r) plane and like a node
for rest of it. Hence, families of outgoing radial null geodesics can terminate
at the singularity in past in such a case. On the other hand the singularity is
a complete node when a is odd. In either case, there are families of integral
curves that terminate at the singularity with either r = 0 or u = 2r as
tangent at the singularity.

Coming to the question of strength of the singularity, it is seen that the
Kretschmann scalar diverges along all non-spacelike geodesics that meet the
naked singularity with a definite tangent. For the case of the mass function
given by (13), the behavior of K along the singular curve (15) is given by,

1—2au>1\? Bk =
K - asa (25 ) (10g ﬁ) (17)
where A, B are positive constants. Clearly K diverges near the naked singu-
larity ask - 0. Ina similar manner it can be shown using (3a,b) that for
any M(u) ~ u®, a > 1, the scalar K diverges along all singular non-spacelike
geodesics. It is thus seen that even though the singularity is not strong in the
sense of condition (8), it is a strong curvature scalar polynomial singularity.

To conclude, we have shown that a general class of non-self-similar space-

times, namely the Vaidya solutions with a non-linear mass term describing
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radiation collapse, contain a naked singularity which exhibits a strong curva-
ture behavior. It follows that serious examples of naked singularities are not
confined to self-similar spacetimes only as the case appeared from the work
so far. Next, it is interesting to note that in all the examples available so far,
a strong curvature naked singularity is associated with a node forming at
the origin of the coordinates, allowing to conjecture that this will always be
a nodal singularity. This conjecture is shown to be true here for the Vaidya
class (1) for the range of A given by 0 < A < 1/8. Conversely, a node need
not always be a strong curvature singularity in the sense of (8) as shown by
the example above, where the node does not satisfy (8) (which however is a
scalar polynomial singularity).

I.LH. Dwivedi acknowledges the support from C.S.I.R. and hospitality at
T.I.F.R. while this work was done.
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