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We demonstrate that the equivalence principle is violated by
radiative corrections to the gravitational and inertial masses at
finite temperature. We argue that this result can be attributed

to the Lorentz noninvariance of the finite temperature vacuum.
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One of the cornerstones of general relativity is the principle of equiv-
alencel, which states, in its weak form, that the gravitational acceleration
is the same for all bodies, or that the inertial and gravitational masses are
equal. There is remarkably strong experimental support for this principlez,
with no violation detected at the level of a part in 1012. Sincé in a quantum
theory a portion of a particle's mass (formally infinite!) arises due to quan-
tum radiative corrections, these must also obey the equivalence principle. Ex-
plicit calculations demonstrate this to be true3. However, in a theory at a
non-zero temperature, additional contributions to particle masses arise through
finite temperature radiative corrections. It has not previously been deter-
mined whether such terms satisfy the equivalence principle, nor is it clear
that they should (see below). In this paper we present evidence that the equiv-
alence principle is in fact not valid at nonzero temperature, and offer an
explanation of why this violation occurs.

We shall study the electron's mass in finite temperature Quantum Electro-
dynamics with 0O < T << m - The restriction to low temperatures is made pri-
marily to ease the interpretation of the results. At low tempefature only
the photons form a singificant background heat bath, with the effects of the
electron-positron heat bathbbeing exponentially suppressed (e_me/T). The inter-
pretation of electron motion in an electron-positron sea could bé clouded by
the Pauli principle. However, the motion of a charged particle in a sea of
photons can be clearly observed via standard techniques.

At non-zero temperature, the particle propagators must be modified to take
into account the effects of motion thr0ugh the background heat bath. Thus, for
example, in the 'real time" formulation of finite temperature field theory, the
photon propagator becomes (in Lorentz gauge) |
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with nB(k) being the Bose Einstein distrubtion function

n_(k) = ——— . (2)

The last terms in Duv describes the emission and absorption of real photons
from the heat bath. Although calculations of finite temperature effects are
simplest in tﬁis real time formalism, since the T=0 and T #0 components are
nicely separated, we have also performed the following calculations via the -
imaginary time methods, where the propagators involve a discrete summation in
the "energy" variable instead of an integration.

The study of the fermion self energy illustrates some of the novel fea-

tures of finite temperature field theory. A simple calculation yields
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The standard decomposition into a Lorentz invariant mass shift dm and a wave-
function renormalization proportional to (§ -m) is not obtained. Instead there
appear noncovariant terms in the self energy. Lacking such co-variance, one
must define what is meant by the term '"mass" very carefully. One possible de-
%inition of a particle's mass, which we will call the '"phase space mass'", is

given by the location of the pole in the propagator6’7. This occurs at
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and m being the renormalized mass at T=0. The wavefunction renormalization
constant can be determined by requiring that the fields are properly normal-
ized6 or by requiring that the charge vertex be correctly obtained (see below)
and is given by
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where we have included the dimensionally regularized T=0 part (with 1l/e =
2/(d-4) + vy - &n 47m + &n mz) for later use. The mass shift has the physical
interpretation of being the effective extra inertia generated by the continual
interaction of the electron with the photons in the heat bath.

Note that this '"phase space mass'" is usually not included in a discussion
of the different types of mass. However it can be given a clear operational de-
finition in terms of threshold’and phase space behavior for particle reactions.
For example a decay of a neutral boson (HO) into an e+e— pair cannot take place

if the HO mass is below 2m , even if m 0 is larger than 2m . One can thus

H

imagine measuring this phase space mass by looking for the threshold of various
reactions. It could also be measured by a careful study of phase space distri-
butions of a particular reaction. Both techniques are presently being utilized
in the search for the possible existence of neutrino mass. 1In principle, the
phase space mass can be distinct frﬁm either the inertial or gravitational masses.
However in our calculation, presented below, it is identical to the inertial

mass in the nonrelativistic limit. As an aside, we note that a fourth defini-
tion of mass is sometimes used in particle physics studies of chiral symmetry

breaking. This ''chiral" mass is defined to be the part of the inverse propa-
g

gator which commutes with the Dirac matrix Ys (¢ anticommutes with Y5)- At finite



temperature this is equal to the T=0 mass m and not the phase space mass. At
T=0, all four definitions of mass coincide, but this is not true at finite tem-
perature, and one of the motivations of this work is to decide which definition
of the mass is appropriate to the gravitational coupling.

In order to define the inertial mass operationally, we imagine applying an
electric field and studying the consequent acceleration of a charged particle.
To do this correctly, we must evaluate the finite temperature corrections to
the electromagnetic vertex. The relevant diagrams are given in figure 1 and

a straightforward calculation yields
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That this result corresponds to no net change in the electromagnetic vertex can
be seen in two ways. When the vertex is sandwiched between spinors, uB(p), which

take into account the finite T self energy
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one obtains
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i.e. the form of the vertex exactly compensates for the non-covariant self
energy in order to maintain the physical current unchanged. Equivalently one
can examine the non-relativistic limit. Since the Dirac wavefunction should
satisfy (removing the wavefunction renormalization)
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we can determine the nonrelativistic Hamiltonian by means of a Foldy-Wouthuysen

transformation, which yields a Schrodinger equation of the form
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In order to formally identify the inertial mass we apply an electric field and

calculate the acceleration
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Thus the inertial mass is equal to the phase space mass in this limit, and is
increased by temperature corrections. Physically this makes sense, as it repre-
sents the increased inertia needed to travel through the background heat bath.
As also might be expected, this effect is smaller for more massive particles
than it is for light ones.

We now turn to the gravitational coupling. We will work in the weak fileld
limit, i.e. to first order in the gravitational field with the radiative cor-
rections being calculated in flat space. For this purpose we need to study the
renormalization of the energy momentum tensor

_ gl _ o1 _ o _ (W)
e iz O Vv T - g GF-m ) ]y

(u)

where m is the unrenormalized mass, related to the renormalized T=0 mass, m ,

using first order dimensional regularization, by
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The relevant diagrams are indicated in Fig. 2. 1In this case we shall quote the

results for both the T=0 renormalization and the finite T correction for each

diagram. We find for the particle's energy-momentum vertex:
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for wavefunction renormalization (see Eq. 6) this leads to the

renormalized tensor
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If one temporarily ignores the temperature dependent terms, this demonstrates
that radiative corrections do respect the equivalence principle at zero temper-
ature, as the energy momentum tensor is not modified and the mass which occurs
here, mys is the same as that which occurs in the propagator. However the finite
temperature correction does not have this feature. One way to see this is to
take this matrix element between the finite temperature spinors defined above,

yielding
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Thus a non-covariant temperature-dependent component appears. Perhaps more con-

vincing is to perform a nonrelativistic reduction. TIncluding the gravitational



coupling, we have the Dirac equation
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and ¢g being the gravitational potential. The Schrodinger equation which emerges

from the Foldy-Wouthysen transformation is
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Computing the acceleration yields the gravitational mass
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which is clearly different from the inertial mass (cf. eqn. 12). At finite tem-

perature then the acceleration in a gravitational field is different for par-
ticles of different mass. This would in principle yield a violation of the
equivalence principle in an Eotvos type experiment, although at accessible tem-

peratures the effect is small. Thus for an electron at 300°K

2
-2 x 107t (21)
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yielding an unmeasurable effect.

Although perhaps surprising on the surface, this result is not in conflict
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with the fundamental ideas of gravitational theory. It appears to occur be-
cause of the lack of Lorentz invariance of the finite temperature vacuum. We
note that if one had used a noncovariant cutoff (instead of dimensional regular-
ization) in the calculation of the standard T=0 radiative corrections, one

would not have obtained an answer consistent with the equivalence principle.
This is known from work on the trace anomaly for the energy-momentum tensor,

as the trace anomaly is required for the equivalence principle3. The fundamental
ideas which led to the equivalence principle include the impossibility of de-
fining absolute motion through the vacuum and the indistinguishability of accel-
eration and gravitational force. However, one can measure absolute velocity and
acceleration relative to the heat bath (as has been done for the velocity of the
Earth in the 3°K photon distribution left over from the early universe). Thus
the conditions under which the equivalence principle was formulated are not met
at finite temperature. The fact that we do live in a universe at a nonzero tem-
perature could in principle have led to unexpected results in the Eotvos exper-
iments if it were not for the fact that the correction is too small to be de-
tected at present temperatures. However, we may ascribe fhis result not to any
intrinsic violation of the equivalénce principle in the fundamental Hamiltonian

describing the universe, but rather to the particular physical state in which

we exist.

These results reinforce the connection between Lorentz covariance (or more
properly general covariance) and Fhe equivalence principle, but also serve to
demonstrate that there are physically realizable situations in which the equiv-

alence principle is not satisfied.
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