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Preheating and Turbulence: Echoes of a Not So Quiet Universe
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We study the nonlinear decay of the inflaton which causes the reheating of the Universe in the
transition from the inflationary phase to the radiation dominated phase, resulting in the creation
of almost all matter constituting the present Universe. Our treatment allows us to follow the full
dynamics of the system in a long time regime, and to describe not only the parametric resonance
processes with nonlinear restructuring but also to characterize a final turbulent state in the dy-
namics by which the energy is nonlinearly transferred to all scales of the system with a consequent

thermalization of the created matter.

Inflation has become a paradigm in Cosmology.
So far all observational data collected from satellites
and balloons have not imposed any considerable dif-
ficulty to the inflationary scenario. Although the
physics underlying the beginning of inflation is still
far from being understood, the end of inflation is a
crucial issue that relates the transition from an al-
most empty and cold universe to a hot and radiation
dominated universe.

The standard description of the end of inflation
is known by reheating. Basically, it consists in the
transfer of the energy stored in coherent oscillations
of the inflaton to the production of particles; after
interacting with each other, they come to a state
of thermal equilibrium. However, several authors[1-
4] have pointed out on the existence of a stage of
parametric resonance in the beginning of the reheat-
ing — the preheating phase. For the sake of sim-
plicity, let us consider a simple model of inflation
in which the inflaton field has self interaction. At
the end of inflation, the inflaton is composed by two
pieces: a large and homogeneous component that
performs coherent oscillations near the minimum of
its effective potential, and quantum fluctuations de-
veloped during the inflation whose modes eventually
become semiclassical. During the stage of coherent
oscillations, energy is rapidly transferred from the
homogeneous inflaton to some modes through the
mechanism of parametric resonance. Physically, this
means a huge production of particles and, due to the
large growth of these modes, they soon cannot be
considered perturbations as the nonlinearities come
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on the scene, and the linear approximation breaks
down. We follow closely the dynamics of the de-
cay of the inflaton in this nonlinear regime and our
treatment alllows us to follow this process in a long
time term. The nonlinearities are manifested by the
backreation and rescattering of produced particles
and mode-mode couplings and will be determinant
for the achievement of the end of preheating signal-
ized by a universe dominated by radiation in thermal
equilibrium.

The aspect of paramount importance for a suc-
cessful reheating is the nonlinear transfer of energy
from the homogeneous inflaton field to its inhomoge-
neous modes. In this essay we shall focus on the con-
nection between a necessary efficient energy transfer
or decay of energy of the inflaton and the onset of
turbulence.

In our specific problem of preheating, we con-
sider the case of the inflaton with quartic po-
tential V(¢) = i¢%. The basic equation of
our problem is the evolution of the inflaton field
#(x,t), in a spatially flat Friedmann-Robertson-
Walker universe[l, 2]. Using the conformal time 7
defined by a(1)dT = v Ado(0)a(0)dt, the conformal
field ¢ = ¢a(7)/do(0)a(0) and spatial coordinates
x = vV Ado(0)a(0)x, it assumes the form

" 2 a’ 3
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where a prime stands for the derivative with respect
to 7 and ¢o(0) is the homogeneous component of the
inflaton field at ¢ = 7 = 0. As we have mentioned
previously, at the end of inflation the inflaton field
undergoes the phase of coherent oscillations. It can
be shown that the effective energy-momentum ten-

sor of the inflaton in the theory $A¢* averaged over



several oscillations is traceless[5], implying a(r) ~ T,
and allowing us to set a” = 0 in Eq. (1).

In this stage, the inflaton field has a large homoge-
neous component, o (7) together with its small fluc-
tuations developed during the inflationary phase, so
that

o(x,7) = po(7) + dp(x, 7). (2)

At this point it will be interesting to make an anal-
ogy between this expression and the corresponding
for the velocity field of a turbulent fluid flow,

u; = U; + du;, (3)

where U; = (u;) is the mean velocity and du; is the
turbulent fluctuating velocity. This last piece can be
decomposed conveniently into Fourier modes, whose
characteristic wave numbers that can be compared
with the typical scale of the flow. As the turbulent
flow evolves, it can be shown that energy is trans-
ferred from the mean flow — the homogeneous com-
ponent of the velocity field — first to Fourier modes
corresponding to large scales and then distributed
for the next smaller scales[6, 7]. This process is a
nonlinear redistribution of energy among the vari-
ous scales of motion, and constitutes one of the key
features of turbulence. Thus, by comparing Egs. (2)
and (3), ¢o(7) and dp(x,7) play the role of U; and
du;, respectively. Also, during the preheating the
energy stored in the homogeneous component of the
inflaton is transferred to the several modes of the
”turbulent” component §p(x, 7). As we are going to
show, it will possible to distinguish the ”large scale”
and ”small scales” modes present in the fluctuation
do(x,T).

The integration of Eq. (1) will be performed in a
two dimensional square box D of size L with peri-
odic boundary conditions. For this task, we shall use
the Galerkin method[6], which is largely applied in
problems of turbulence. The basis functions {y¥x(x)}
that satisfies automatically the boundary condi-
tions is suitably chosen as ¢y (x) = ezp (& k.x),
where k = (I, m) is the comoving momentum. The
Galerkin-Fourier decomposition for the general in-
flaton field is

N N
ex,t) = Y D am()im(T,y)

I=—Nm=-N
= <p0(T) + Z Qim (T)d)lm(x’ y)a (4)
I,m

where N is the order of truncation to be chosen. The
basis functions are orthogonal with respect to the in-
ner product defined by (Yi,¥1) = [, ¥y &x =
L?68,y. The modal coefficients a;, are the clas-
sical analogue of amplitudes for processes of cre-
ation/anihilation of particles in QFT. Not all modal

coefficients are independent, since by imposing the
scalar field to be real, we arrive at a,, = a_;—m-

The remarkable advantage of the Galerkin method
is to provide a dynamical system view of any physi-
cal system governed by partial differential equations.
Usually, this reduction generates a low dimensional
model that exhibits the same qualitative features of
the exact system. In our case the Galerkin procedure
is straightforward: insert the decomposition (4) into
Eq. (1), the resulting equation being then projected
into each kth mode 1 (x). As a result, we obtain a
set of equations for ay(7) given by

ap (1) + wiak(r) + Z an(7)ar(7)ak-n-1(7) =0,
n,l
(5)

where wi = ‘%";—kz. A further decomposition of
the modal coeflicients into their real and imagi-
nary parts is necessary, or ax (1) = ax(7) + i k(7).
The symmetry imposed on the modal coeflicients
produces ax(r) = a_k(r) and, Bk(r) = —B_k(T)
(note that the modal coefficient Bo(7) is zero, and
ao(7) = ¢o(7) is the homogeneous component).
The corresponding general equations of motion for
the homogeneous component ag(7), as well all other
modes of the ”turbulent” component dp(x,7) are
encompassed by Eq. (5), where the nonlinear terms
have their origin in the mode-mode couplings includ-
ing the homogeneous component. In the first stage
of the preheating these nonlinear terms can be ne-
glected, thus from Eq. (5) the usual description of
this stage is recovered: the homogeneous component
exhibits oscillatory behavior, whose exact solution is
given in terms of an elliptic cosine with modulus v/2,
up to a rescale of the conformal time; the remain-
ing modes satisfy Lamé equations and, depending
on the value wy assumes in the stability /instability
chart for the Lamé equation, the modes undergo
the regime of parametric resonance with exponen-
tial growth or are oscillatory. In plain terms, this
means that the homogeneous component of the in-
flaton transfers considerable amount of energy to
these resonant modes; this allows us to denote the
resonant and the nonresonant modes as correspond-
ing respectively to the large and small scales of the
turbulent flow. Once the resonant modes (”large
scale” modes) have grown considerably, the mode-
mode couplings become relevant, and we may ex-
pect the beginning of the transfer ot energy to the
initially nonresonant modes (”small scales” modes).
In order to go further with our analogy, it is now of
utmost importance to integrate numerically Eq. (5),
meaning the full evolution of the homogeneous com-
ponent together with all other modes. The initial
conditions are dictated by the physical conditions
at the end of inflation as follows: due our rescaling



a0(0) = 1 and aq(0) = 0; the initial conditions for
the remaining modes are of quantum origin, more
precisely, from the sub-Hubble modes at the end of
inflation (see Ref. [3]). We have set N = 2 resulting
in a dynamical system constituted by 25 indepen-
dent second-order equations. Our guide to choose a
suitable value for L is the linearized regime described
after neglecting the nonlinear mode-mode couplings.
Several modes were selected which undergo an ini-
tial phase of parametric resonance by considering
the stability /instability chart for the Lamé equation
that governs the evolution of the modes ax and fx in
the linearized version[2]. Then, we set L = 57/v/2
such that all modes with |I|] = 2,|m| = 1 are in-
side the instability band (in this case wiy,;, = 1.6)
and are amplified. We have performed numerical
experiments(8] with sets of initial conditions deter—
mined by different values of A ranging from 10713
to 10~* that determines[3] the initial amplitude of
the modes oy and fBx. The only observed physical
feature due to the choice of distinct values of A is
the time required for the nonlinearities to become
important.

In Fig. 1, the long time behavior of the homo-
geneous mode of the inflaton field, ag(7), the res-
onant ("large scale”) mode B12(7) and the nonres-
onant ("small scale”) mode a;1(7) are depicted for
A = 1074, We have identified three distinct phases,
where the particular duration of each phase depends
on the value of A. In the first phase that lasts from

= 0 to 7 =~ 80, ag(7) oscillates with constant
amplitude indicating that the mode-mode couplings
have negligible influence. The behavior of the reso-
nant mode f2(7) and the nonresonant mode a;;(7)
are in agreement with the prediction provided by
the linearized theory, i.e., the former experiences ex-
ponential growth while the later oscillates without
changing considerably its amplitude.

In the second phase lasting from 7 ~ 80 to 7 =
240, the nonlinear mode-mode couplings start to al-
ter the evolution of the homogeneous mode ao(7),
the resonant and nonresonant modes as well. Basi-
cally, this phase is characterized by the end of the
parametric resonance with the beginning of the re-
structuring of the resonance. In other words, the dis-
tribution of energy from ”large” to ”smaller” scales
enters into scene. As it can be seen from Fig. 1,
ao(7), the resonant mode f;12(7); the nonresonant
mode aj;(7) oscillates with increasing amplitude.
Note that a minimum of the envelop of the oscillat-
ing mode o (7) coincides approximately with a max-
imum of the envelope of the resonant mode S;2(7),
and vice-versa, indicating a process of rescattering
between these modes. Indeed, these nonlinear effects
constitutes the first manifestations of what is known
as the backreaction and rescattering. Then, we may
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FIG. 1: The behavior of (a) homogeneous mode ao(7),
(b) a typical resonant mode Bi12(7), and (c) a nonreso-
nant mode a1 (7) for A = 10™%. The overall dynamics is
characterized by three phases: the linearized phase form
7 = 0 to 7 ~ 80, where the conventional preheating takes
place; the quasi-periodic phase (= =~ 80...240), whose rel-
evant feature is the end of the parametric resonance; and
finally, the third phase - the turbulent phase. In this last
phase there is no distinction between a resonant and a
nonresonant mode due to the effective energy transfer
from the inflaton to all mode.

denote this phase as the quasi-periodic phase.

The third phase initiates at 7 =~ 240 when the am-
plitude of the homogeneous mode reaches approxi-
mately a minimum of about 70% of its initial value.
Remarkably, this feature was found for all values of
A in our numerical experiments. As it can be seen
from Fig. 1, the homogeneous mode oscillations
have an irregular pattern of modulated amplitude
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FIG. 2: Power spectra of the variance evaluated at
T = 81.92, v = 327.68 and 7 = 655.36, the last two
corresponding to the third phase. It is worth observ-
ing that this sequence show the period bifurcations §w1,
w1, for the first peak 2ws, and $ws, for the second,
as indicated by the arrows. This behavior is typical of
the onset of turbulence found in fluid mechanics, as for
instance in the Couette flow.

followed by a sequence of small bursts. Nonethe-
less, the most important, aspect to be pointed out is
the continuous decay of ao(7). Concerning the res-
onant and nonresonant modes, it is no longer pos-
sible to make a distinction between them. These
features are a dramatic consequence the action of

nonlinearities, namely, the backreaction of the cre-
ated particles into the homogeneous mode, as well
as the rescattering of the produced particles into all
other modes. Eventually, there will be no distinction
whatsoever between the homogeneous mode and any
other mode. Physically, this means that all modes
will be in average equally populated, the particles
dynamically transferring and distributing the energy
among the modes producing, in this way, the ther-
malization. The thermalization process corresponds
actually to the onset of a turbulent phase. A quan-
titative measure of the sum of all modal fluctuations
produced about the homogeneous mode is given by
the variance 02 = {(p — ao)?) = 3 (af +pL), where
ap is the expected value of the inflaton field. The
power spectrum of the variance will be used to make
a definite characterization of the final thermaliza-
tion phase as the onset of a turbulent regime. In-
deed, Fig. 2 depicts a sequence of the power spec-
tra of the variance evaluated at several times, from
the first to the third phase. This transition is con-
stituted by period bifurcations, giving rise to ap-
proximate frequencies Jwi, 1w, w; and 3ws, with
wy; ~ 1.77 and we ~ 3.45, characteristic of a typi-
cal road to turbulence([7]. From the power spectrum
for 7 = 655.36, it can be noted the presence of broad
band portions, despite the presence of sharp frequen-
cies, which tend to disappear asymptotically. This
last phase is denoted as the turbulent phase.

In conclusion, the Galerkin projection method es-
tablishes a clear dynamical picture of the nonlinear
decay of the inflaton with potential V(¢) = $A¢* as
the dynamics of a countable set of nonlinear coupled
harmonic oscillators. The process develops in three
distinct phases[9], starting from the linear regime
of parametric resonance to a final thermalization
process. An essential feature of the process is the
transition from the quasi-periodic phase, in which
the parametric resonance is suppressed, towards a
turbulent regime characterized by a highly effective
transfer of energy from the homogeneous mode to
"large” scale modes and then to ”small” scale modes,
due to the nonlinear coupling of the modes that dom-
inates the dynamics in a long-time term. As we have
mentioned, this last aspect is a remarkable property
observed in turbulent fluid dynamics in which an ef-
fective energy transfer from the mean flow to the
turbulent flow takes place[6]. Therefore, as a con-
sequence, all modes eventually become statistically
equally populated indicating the state of thermaliza-
tion.
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