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Chaos plays a ubiquitous role in physics, at least in systems with sufficient
complexity. Long ago, Belinskii, Khalatnikov and Lifshitz (BKL) discovered
that the generic solution of the four-dimensional Einstein’s vacuum equations
near a cosmological singularity exhibits a never ending oscillatory behaviour
[1]. This oscillatory behaviour has the character of a random process, whose
chaotic nature has been intensively studied [2]. However, two results cast a
doubt on the physical applicability, to our universe, of this chaotic picture.
First, it was surprisingly found that the chaotic BKL oscillatory behaviour
disappears from the generic solution of the vacuum Einstein equations in
spacetime dimension D > 11, to be replaced by a monotonic Kasner-like
power-law behaviour [3]. Second, it was proved that the general solution of
the four-dimensional Einstein-scalar equations also exhibits a non-oscillatory,
power-law behaviour [4], [5].

Recent developments in particle physics suggest that the long-range fields
that can exist near a spacelike singularity (i.e., for energies above some
symmetry-breaking threshold) are more numerous than the ones considered
in the Standard Model, namely, the metric g,,, some Yang-Mills fields and
some Higgs fields. The most ambitious unified theory (and our best present
candidate for a quantum theory incorporating gravity) is the theory of super-
strings [6]. Superstring theory predicts that the massless degrees of freedom
which can be generically excited near a cosmological singularity correspond
to a high-dimension (D = 10 or 11) Kaluza-Klein-type model containing,
in addition to Einstein’s D-dimensional gravity, several other fields, which
are scalars, vectors and/or forms (i.e., antisymmetric tensors). In view of

the results quoted above, it is a priori unclear whether the full field content



of superstring theory will admit, as generic cosmological solution, a chaotic
BK[L-like behaviour, or a monotonic Kasner-like one. Most of the string cos-
mology literatﬁre (notably the work on the pre-big-bang scenario [7]) has
implicitly assumed a monotonic Kasner-like behaviour. Here, we report the
result that the massless bosonic content of all superstring models (D = 10
ITA, TIB, I, hetg, hetso), as well as of M-theory (D = 11 supergravity),
generically implies a chaotic BKL-like oscillatory behaviour near! a cosmo-
logical singularity. It is the presence of various form fields that provides the
crucial source of this generic oscillatory behaviour.

We consider a model of the general form
Sz/de\/g[R(g)—Bugoa”go—Z e ? (dA,)? . (1)
)

Here, the spacetime dimension D is left unspecified. We work (as a convenient
common formulation) in the Einstein conformal frame. The integer p > 0
labels the various p-forms A, = A, . ,, present in the theory, with field
strengths F,1 = dAp, ie. Fuou.p, = Ou Auy..n, = p permutations. The
real parameter A, plays the crucial role of measuring the strength of the
coupling of the dilaton to the p-form A,. The model (1) is, as it reads, not
quite general enough to represent in detail all the superstring actions. Indeed,
it lacks additional terms involving possible couplings between the form fields.
However, we have verified in all relevant cases that these additional terms do
not qualitatively modify the BKL behaviour to be discussed below [8]. On
the other hand, in the case of M-theory, the dilaton ¢ is absent, and one

1Our analysis applies at scales large enough to excite all Kaluza-Klein-type modes, but

small enough to be able to neglect the stringy and non-perturbative massive states.



must cancel its contributions to the dynamics.
The leading Kasner-like approximation to the solution of the field equa-
tions derived from (1) is, as usual [1]
d
G dzt dz” ~ —dt? + 3 7@ (W2 p~p, (z) Int+1(z), (2)
i=1
where d = D — 1 denotes the spatial dimension, z stands for the spatial co-
ordinates and w* (z) = €} (z) d2’ is a time-independent d-bein. The spatially
dependent Kasner exponents p; (z), p, () must satisfy the famous Kasner
constraints (modified by the presence of the dilaton):
d d
P+ pi=1, > p=1. (3)
i=1 i=1
The set of parameters satisfying Eqgs. (3) is (topologically) a (d—1)-dimensional
sphere: the “Kasner sphere”. When the dilaton is absent, one must set
p, to zero in Eq.(3). In that case the dimension of the Kasner sphere is
d—2=D-3.

The approximate solution (2) is obtained by neglecting in the field equa-
tions for g,, and ¢: (i) the effect of the spatial derivatives of g,, and ¢,
and (ii) the contributions of the various p-form fields A,. The condition for
the “stability” of the solution (2), i.e. for the absence of BKL oscillations
at t — 0, is that the inclusion in the field equations of the discarded con-
tributions (i) and (ii) (computed within the assumption (2)) be fractionally
negligible as ¢ — 0. As usual, the fractional effect of the spatial derivatives
of ¢ is found to be negligible, while the fractional effect of the spatial deriva-
tives of the metric contains, as only “dangerous terms” when ¢ — 0, a sum

of terms o t%%ik where the gravitational exponents g;x, (1 # 3,1 # k, j # k)
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are the following combinations of the Kasner exponents [3]
9k (P) =2pi+ Y, pe=1+p; —p; — D (4)
££i5.k
The “gravitational” stability condition is that all the exponents g;; (p) be
positive.

It was shown in [3] that if the only stability conditions were the gravita-
tional ones, they could be satisfied by the pure vacuum Einstein equations
in D > 11, or, equivalently, by the dimensional reduction of these equations
(without freezing any degree of freedom) in any lower dimension. We found,
however, that this fact is crucially changed by the presence of form fields A,.
These fields give additional source terms on the RHS of the Einstein-dilaton
field equations, thereby yielding further stability conditions. These stability
conditions can be derived by solving, a la BKL, the p-form field equations
in the background (2) and then estimating the corresponding “dangerous”
terms in the g,,- and @-field equations. When performing this detailed anal-
ysis, one gets, as additional dangerous terms for ¢ — 0, a sum of “electric”

(p) (»)
I 2P . 26
contributions oc t““1-i» and of “magnetic” ones oc t 1id-p-1. Here, the

electric exponents egf )lp (where all the indices i, are different) are defined as
(») _ Ly
€y (P) = Pia + Pig + 0+ Dy — 5 Ap D (5)

while the magnetic exponents b.gzl)?"jd—p—l (where all the indices j, are different)
are
1
07 amps (P) = Dis + Djy 7 Dig ey + 5 Aoy (6)

To each p-form is thus associated a double family of “stability” exponents

e bP). This generalizes the discussion of [9] on the effect of vector fields
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in D = 4. The condition for the stability of the Kasner-like solution (2), i.e.
the condition for the absence of BKL oscillations, is that all the exponents
9ijk (P), ez(-f.)_.ip (p), bg‘f.)..jd_p_l (p) (considered for all possible indices i, j, k,
in, Jn, and all possible forms) be strictly positive for the (spatially varying)
values of the Kasner parameter p,(z) involved in Egs. (2), since this would
imply that all dangerous terms are fractionally negligeable as ¢ — 0.

The main result reported here is that, for all superstring models, there
exists no open region of the Kasner sphere where all the stability exponents
g(p), e(p), b(p) are strictly positive. Accordingly, the generic solution of the
low-energy string models can never reach a monotonic Kasner-like behaviour.
This result has been obtained by (i) a direct algebraic analysis of the stability
conditions for M-theory, and for the heterotic model, and (ii) a crucial use
of the various string dualities to transfer the applicability of the analysis of
(i) to the other superstring models. [E.g., we use the T-duality between I1A
and IIB superstring theories to define a map of the corresponding Kasner

HB) " which exhibits the equivalence of the Kasner-

parameters, p/’4 = 7(p
stability conditions of the two models.]

Following the BKL approach [1], we have then gone further and studied
the evolution of the fields near a cosmological singularity as a sequence of
Kasner-like “free flights” interrupted by “collisions” against the “potential
walls” corresponding to the various stability-violating exponents g, e or b. We
found a universal “collision law” giving the Kasner exponents of the Kasner
epoch following a collision in terms of the old ones [8]. It generalizes the

collision law obtained in four dimensions, which is known to define a chaotic

discrete dynamics [2].



Consequently, in all string models, the general solution near a cosmolog-
ical singularity for the massless bosonic degrees of freedom exhibits BKL-
type oscillations, i.e. a (formally infinite) alternation of Kasner-epochs.
This fact might have a significant impact on the pre-big-bang scenario [7]
which strongly relies on the existence, near a (future) cosmological singu-
larity, of relatively large, quasi-uniform patches of space following a mono-
tonic, dilaton-driven Kasner behaviour. By contrast our findings suggest that
the spatial inhomogeneity continuously tncreases toward a singularity, as all
quasi-uniform patches of space get broken up into smaller and smaller ones
by the chaotic oscillatory evolution. In other words, the spacetime structure
tends to develop a kind of “turbulence” [10]. This result indicates that su-
perstring cosmology is much more complex than is assumed in the simplified

models currently discussed in the literature.
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