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ABSTRACT

A distribution of virtual black holes in the vacuum will induce
modifications in the density of states for small perturbations of
gravitaticnal and matter fields. If these virtual black holes fill the
- volume of a typical spacelike surface - then perturbation theory becomes
more convergent and may even be finite, depending on how fast the number
of virtual black holes increases -as their size- decreases. For
distributions of virtual black "holes which'™ are . TSCale'iﬁVériant the
effective dimension of spacetime is 1owered‘to a noninteger value less than
four,' leading to an interpretation in termsxof fractél geometry. In Ehis.
case_ general relativity is renormalizable in the 1/N expansion without
higher dérivative terms. As the Hamiltonian is rot modified the theory is

stable.
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One of the oldest and most exciting ideas to be proposed concerning .-

quantum gravity 1is that the gravitational field should act as a universal -~

regulator, rendering all quantum field theories convergent through
- o | 1-¢
nonperturbative quantum gravitational effects below the Planck scale.

Although there are rather compelling arguments for this idea, and effects
of this sért-are found by summing up certain classes of diagram;?ttp till
- NOW. no systematic realization of this idea in the context of quantum
field theory has been found.

Another .idea which has a 1long history in quantum gravity is that of
spacetime foam?'bThe basic idea here is that_Einsteiﬁ;s action, being of
dimension two, does not effectively damp large quantum fluctuations in the
metric at scales smaller than the Planck length. As a result one expects
thatJ if Einstein's action governs the dynamics at smaller than Planck
scales, the geometry and the causal structure of spacetime should be -more
and more complicated at smaller and smaller scales;

Recently we discovered that there is a simple mechanism by means of which
the high energy‘behavior of perturbation theory will be regulated' if thé
vacuum contains va distribution ‘of black hoies whose density increases
with decreasing scale? This mechanism has nothin.g- to do with ,topo_iogy; or
‘changes thereof,k but arises: from an alteratiqg in the specﬁrum of
perturbations bf the metric and other fields ind&éed by the presence .of -a
. disﬁribution of black holes 1in the vacuums, »This effect is understood
“-difectly in terms of a semiclassical expansion of the path integral over
spacetimes with Minkowskian, rather thaﬁ Euclidean, signature.

It might seem that to describe the physical properties of a vacuum state
containing a distribution of virtual black holes we would have to first

solve the difficult problems associated with - how black holes, real or
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v{rfualu disappear, once the semiclassical evaporation process has

brought them down to Planck scales. . However, we find that these

difficqlt problems can be sidestepped if we -are willing to make one“
assumption concerning their eventual resolution. This is that the phase
of the wavefunction of anything which comes out of a black hole 1is
completely uncorrelated with the phases of the wavefunctions of everything
which went into the formation of the black hole. In addition the phases
associated with different particles which emergé from the black hole are
uncorrelated. In other words, we assume that the disordering of the
phase of the quantum state which Hawking diseoveredr in the semiclassical
theory for real black hole;gis actually true in the full quantum theory
for both real and virtual black holes.7'1C? .

Given this assumption no process involving something which falls into
and then emerges from a black hole can contribute coherently to a sum over
virtual  intermediate states in perturbation theory. Then, if the

‘background manifold contains black holes only those small perturbation

J

which. vanishron the apparent horizons of the black holes’cgg - contribute
coherently to perturbation théory. In other words, whileA/;laqk holes in‘
the Dbackground geometry cannot contribute to perturbation theory directly
as Intermediate states, they have an indirect effect in that the presence
of the black ﬁoles alters the boundary cornditions that the states which do
conﬁribute coherently must satisfy.

| Once we make this assumption we can be confident about the use  of  a
semiclassical expansion of the functional integral to describe. a vacuum
State containing a distribution of virtual black holes. This is because;

while it may not be correct to describe the geometry inside the horizon of

a virtual black holes semiclassically, we have no such doubts .concerning
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the evolution of the geometry and the fields in the region outside the

black hole horizons. Thus, we can construct a -reliable semiclassical
model of spacetime foam in which the virtual black holes are represented
by black holes in the background metric, and the quantum fields which
correspond to small perturbtations in the gravitational and matter flelds
satisfy the boundary condition that they vanish on and inside their -
~apparent horizons.

Of. course 1t 1is difficult to construct a manifold which has a
distribution of black holes at all scales. Thus, we proceed by
constructing a cutoff functional integral in Qﬂich a short ‘distance
cutoff, a, is imposed on the background geometry such 'that all black

TAGRKES
holes in the background must have a radius “"A than a, and must be spaced
more than a distance a apart. Then 1/a is imposed as a high frequency
cut off for the spectrum of perturbations and, after computing the Green's
.functions, we define the theory by taking the 1limit a ->0.

There is then a simple effect by which the distribution of black holes in
the background induces an additional cuteff dependence in sums over virtual
statés_in perturbation thecry. As a result ofb the imposition -of the
béundary condition mentioned above the density of states for the
perturbations of any field are multiplied by.a factor A(a) which 1is the
volume of a typical three surface which remains once the interiors of the
black holes have been excluded.:

In order to éomputé A(a) we must know the density of black holes of
various sizes 1In the vacuum. This may be specified by a function p(b)
which is defined such that p(b)db is the number of black holes per unit
volume in the vacuum with radii between b and b+db.

The naive arguments for spacetime foam, which are based on the
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uncertainty principle and the form of the Einstein action, suggest ‘that

p(b) should be negligible for b>lP k,~but should diverge as b->0.

lanc
Unfortuﬁately, we cannot compute p(b) by perturbative methods, so at the
present time we are restricted to discussing the effect that various forms
of p(b) would have on the divergence structure of perturbation theory. At
the present time we are investigating several ideas for computing p(b),
. based on the strong coupling expansioﬁf'or on a Monte-Carlo simulation
involving the Regge calc:ulus:12

In order to compute the effect of p(b) on the dens;ties of states it is
most likely sufficient to consider a model in which altypical three surface
containing a distribution of black holes with some distribution of relative
velocities 1is approximated by a three surface, I(a) on which all the black
holes are momentarily at rest with respect to each other. This is
convenient because the metric of such a three‘surface, with an arbitrary
distribution of black holes, is known to have the simple formj

Iy 0 = 0t §; 1)

where

o . t m - N ‘

TN = 1+ 24 (2)

L « 2T . ~-X| | .
Here ma and Ca are, respectively, the masses and the positions of the

centers of the black holes. The suffaoes ]E;—§]=ma/2 are apparent
horizons which are called the throats of the black holes.

These metries are complicated inside of these horizons, but as we are
only interestéd in perturbations which vanish inside of all horizons this
is of no concern to us. This model does.have the disadvantage that
Lorentz and translational invariance are lost -for‘ the spectrum of.
perturbations on a given background I(a). However we believe that this is

not essential and that these symmetries -may - be restored in a more .
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sophisticated version of this model, perhaps 1involving summing over a

class of background manifolds, without changing the results which follow.

On I(a) the density of states for any fileld will have the asymptotic

form,

D, twydw = KawrA@dwV  (3)

where K is a collection of constants? In this model it is simple to

compute the relationship between p(b) and A(a) We find,

A(a) = exp[Figq b’ @CBLJQJ (%)

Since 1/a is the cutoff frequency we have,

Dy (w) < le\/w[-"fw

Thus we see that if p(b) is sufficiently divergent as b->0 the effect of

g b’ CCL)db]

l

the high frequency fluctuations will be regulated.

It is easiest to examine this by first considering some examples. Assume

to begin that p(b) diverges as b->0 as, ( , N
S IC L
¢ - LY b |

with @0. Then we find that,

A(é): pr[*@ziﬁ(i —(@wm)i)] - (;}

3 g
Thus, an exponential cutoff is induced in the density of states at -a
frequency _ |
. i3 ’3i EF
wO = ; g (/Umthk )
| | 47 ( 4

and all sums over virtual states are convergent. Thus, for such
distributions the proposal that nonperturbative gravitaticnal effects at
short distances render all quantum field theoriés finite 1is reaiized.

A somewhat different proposal for the high>energy behaviof in quantum
gravity, known (s asymptotic safetyﬁ%is realized if p(b) is of the form of

(5 ) with @=0. This proposal states that general relativity becomes.

 and V (¢ 4 volume  which Yas Leew iutvduced 45 gn | v g v oot
Cutots_
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renormalizable through a non-trivial fixed point of the renormalization
group, the result being that Green's functions become asymptotically scale
invariant in the limit of short distances. = Now it has been known for
several years that this proposal can be realized by adding to the
Lagrangian terms of dimension N.H; However, because the metric 1is.
dimensionless these terms involve four derivatives so that when they are .
. added to the theory the Hamiltonian is no longer bounded from below and
there is no stable ground s't:at:e.‘6 —

It has been suspected that this problem could be avoided, and the
proposal of asymptotic safety rescued, if itﬁIQere the case that
nonperturbative effects induced an anomolous dimension for the
gravitational field. It is‘ remarkable that this is exactly the effect of
a scale invariant distribution of virtual black holes, which is that given
by ( §) with q=0. In this case the density of states is found to have

?

the form,

plavcis
where e=4wC/3. 1In this case all fields behave at high enérgy as if they
were in a spécetime of l4-¢ dimensions. Given this one can show -using' the

1/N expansion that general relativity becomes renormalizable without any
5%

|
counterterms other than the usual Einstein and cosmological terms. The
renormalization proceeds through- a nontrivial fixed point in the
gravitational and cosmological constants, details are given in[¥]. After

renormalization the graviton propagator is found to have the form,
' )12

5 (Fz) | = MENTH: e «, N
> 7 v 77 (1~ M )
where B(e) is a finite constant. As q2—>w, ¢ )]
3
(p*)y —» oINS A
§ | N BE(=P?) = My,

showing that the anomolous dimension of the graviton is e/2.

: E .. 'l'-i 3 \ {
|>4‘ (C\}) - K Wz(iq—- ) \// -—< K (/u w?i’mc‘f{ V/ (
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This behavior can also be understood in terms of a fractal picture of -
spacetime geometry, because the set of points which remains when one

removes from R3 a random  scale invariant distribution of spheres,

| #

corresponding to the interiors of the black holes, is fractal. ’

One thing which is very good about both of these cases 1s ‘that the
regularization induced by foam is universal and gffects both gravitational
~and matter perturbations. This is necessary to get a sensible . quantum
-theory involving gravity because even in ﬁhe semiclassicai theory

(8

logarithmic divergences in <T_,> induce untenable instabilities. If these

ab
are to be avoided the regularization must render logarithmic divergences -
finite. ’ - . -

Since p(b) has yet to be calculated it is interesting to see what forms

of p(b) will accomplish this. To investigate this it is useful to define a

scale dependent anomolous dimension, )
C(a) = 2LNAG) = 4T a¥pla) (t2)
JLIVA

For e(a) small it may be shown that d(a)=U4-e(a) is a generalization of

Mandelbrout's -scaling dimehsion,‘ and that its limit,‘as a->0,1s the
Hausdorff dimension. It is easy to-show that logarithmic divergences will

be regularized if the integral
pl iy

S ¢ ¢y pf - S b £00) ] (13)

is finite.  One can show that a necessary condition for this is that
A(0), the three volume of the set of points nét contained in black holes
‘of all scales, is zero?' However, it is not necessary that the Hausdorff
dimension be less than four for J to be finite. For example, it 1is
sufficient that e(a)>0 for a>0 and that it go to zero as a-~>0 at least as

slowly as C/|1lna| with et

The graviton propégator (1 0) clearly has a nonunitary piece. , However,
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this cannot be a reflection of an instability because no new ccunterterms -

have been added to the Lagrangian. The Hamiltonian 1Is still that of
_general relativity and, as the arguments which guarantee the positivity of
the energy1§2111.hold»for £(a) cf the form of (I1Xx2), perturbation
theory should be stable. Instead, of being connected with an instability,
the nonunitarity of (40) is a consequence of our boundary condition,
which has forced us to truncate sums over virtual states by removing any
which correspond to particles falling into black holes. Thus the loss of
unitarity is connected with our original assumption, it is in fact a
measure of the loss of quantum coherence induced by tﬁe presence in the
vacuum of virtual black holes. S

In spite of the loss of dnitarity we believe that it will be possible to
show that the theory conserves probability. This will require a

framework which generalizes quantum theory in that it allows the loss of

quantum coherence and the evolution of pure states to mixed states. Two
possiblities for such a formalism are Hawking's dollar matrix formalism?

24

and stochastic quantization on curved manifolds.

We close by notingithat this idea, if correct, has important implications
for particle ph&sics. As all logarithmic divergences must be regularized
to avoid instabilities, dimensionless coupling constants and fermion
masses can suffer only finite renormalizations. In particular a number
of formerly divergeﬁt mass'differences now become computable. In addition
four-fermi interactions now become renormalizable in the context of a 1/N
expansio&ﬂgnd it is likely that ordinary supergravity becomes similarly
renormalizable. Finally, the loss of quantum coherence due to the virtual
black hcles will 1eéd to universal CP violation. This will be tiny on

elementary particle scales, but it is: not ©possible to avoid the
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speculation that this may be responsible for- part or all c¢f the CP
violation observed in K-mesons.

What 'is most exciting is that by computing p(b} we may be able to make
definite predictions for these and other previcusly noncomputable

quantities.
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