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Abstract. The corrections to the radlus vector of a planet,
calculated according to the conventional Newtonian
theory, that are required by general relativity are
discussed. For Mercury the principal effect 1s one
of anomalistlc period and coeffilcient 2 km, If the
effects smaller than this were detectable it would
constitute a fourth observational test of general
relativity.
Now that interplanetary distances are being inferred
with very high nominal precision from the to-and-fro time of travel
of radar signals, it becomes worthithile to enquire what corrections
to the conventional values calculated according to Newtonlan
theory may be required by general relativity, in addition to the
well-known effects of the secular advance of the perihelion.
W. de Sitter (1916) has developed the astronomical consequences
of general relativity with all the rigor that 1s desirable for the
present application. But in treating the motion of a planet he uses
the method of variation of arbitrary constants, gilving explicit
expressions for the major axis, mean longitude at epoch, eccentricilty,
and longitude of perlihelion. The method, while 1t is superior to
any other for exhiblting the well~known secular advance of the
perihelion in a simple and direct way, 1s not so ready for my
purvose here, which 18 to obtain expliicit expressions for the orbital
longitude and the radius vector. It is possible, of course, to
obtaln the two coordinates mentioned by transformation of de Sitter's
expressions for the four elements. But here I desire to fix the
conatants of lntegration so that the calculated orbital longitude
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will agree as nearly as may be with the value obtained by direct
observation. The attempts I have made to lmpose the necessary
‘conditions on de Sitter'!'s developments have led to prolix expressions
that are difficult to interpret metrically. It 1s easler to pro-
ceed directly to the calculation of the coordinates by Hansen's
method, and that is what I have done here.

In order to save space I omit most of Hansen's formulss,
which can be found in many places, for example in Brouwer and
Clemence (1961). I also omit demonstrations of those propositions
of relativity that can be found elther in de Sitter (1916) or in
the standard works, especlally Pauli (1958).

In the theory of relativity itself, four conditions are
left unspecified. Only six of Einstein's ten equations of gravi-
tation are independent; four relations of ldentity exist among then.

If we neglect tﬁe mass of the planets, and assume that
the gravitational fleld of the sun is étatic and spherically
symuetric, then the three components gi). 8oy, &34 of the funda-
mental tensor all vanish, which fizes three of the four conditions
at our disposal. The assumption that the field is static (not
varying with the time) is equivalent to specifying how the time
is to be measured, and 1ﬁ fact is equivalent to saying that the
solar system is nelther expanding nor contracting (neglecting of
course any possible effects from the planets and from loss of mass
by solar radlation). Whether either (or both) of our practical
measures of time (ephémaris time or atomlc time) accords with the
assumptlon of a static fleld 1s a matter for experimental verifica-
tion; no discrepancy has yet appeared, nor is likely to until distance
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measurements in the solar system have been continued for some time.

It follows from the assumptiori of spherical symmetry
that the motion of a planet is in a plane passing through the
center of the sun.

Under the two assunmptions the square of the four-
dimensional line element may be written ds’s - (i+a)dr (1+3)r*do "

+ (127) ¢ dt where r is the radius vector, 6 the true
orbltal longitude, ¢ the veloclty of light regarded as a constant
of the theory, t the time, and ¢ , [3 sy three small parameters
which may be developed as power series inﬂ/r s A being the
gravitational radius of the sun, 1.48 km. (My A is called m
by Panli and ;\02 by de Sitter.) It suffices to take X and@ to
the first order and ) to the second, ) being needed to one higher
order because it is multiplied by c2,

Now since the manner of measuring the time has already
been specifled, and since 6 1s a conventional coordinate, it is
evident that the fourth condition, which remsins at our disposal,
will fix the measure of r. It also follows that once this condition
1s fixed, the values of of , 5 ,) mist become determinate, and
indeed it turns out that the equations of motlion Just suffice
for their determination.

Of the numfous condltions that may be imagined, only
two have gained much popularity in the study of planetary motion,
probably because, with the exception of the one gilving the line
element of special relativity, they are the only possible ones
in a static homogeneous universe; and while the universe may not



il
be static, there is no objection to supposing the gravitational
field of the sun to be so, which is sufficient for my purpose.

The two conditions are:
A, PO
B, & =) =0
They lead to the values

where]{ i8 the first-order part of ) .
A_p::()> - :}/: -—27\/7‘

2/ 2

B ~o= =7 -2Mr, 7=-2Mr+zh[r

In system A the second-order portion of
System A corresponds (to the stated accuracy) to the line element

of K. Schwarzschild (also used by Einstein), in which rigorously

1 J1 = 2Mr
p =0
v = -2Afr

In system A. the measured veloclty of light 1s

/
A, U= C‘[/+"i)7'(/+ C051V>]
where V 1s the angle between a light-ray and the radius vector;

since )/ 1s negative, v is a maximum in directions perpendicular

is 1ldentically zero.

"

[+ &

M

to the radius vector.
In system B the line element was first glven by de Sitter.
It corresponds (to the stated accuracy) %o the one afterwards given

by H. VWeyl, in which rigorously 4
j+ o = 1+ = (1+2/27)

2 2
14y = (1=2/27) /[/+ AJ27)
In system B the coordinates are 1sotroplc: that 1s, at any point
the velocity of light is the same in all directions. Its measured



value is
B. V= C(14%)

There 1s no inconsistency in supposing the measured
veloclity of 1light to be less than ¢, or to depend on direction.
In system B we muast suppose that distances are measured wlth rigid
rods, which are contracted by the gravitational acceleration when
they are polnted toward the sun; the propagation of light being
correspondingly slower in that direction (as viewed from outside
the system), its measured value remains the same in all directions.
In system A we must suppose that distances are inferred from the
travel-time of the light 1tself, and no such compensating effect
takes place. System A is then the one appropriate to the present
purpose, but I make the calculations for both, in order to show the
differences between them., The gravitational red shift (to the
first order), the deflection of light-rays passing near the sun,
and the advance of the perihelia are all the same In both systems.

In system A Kepler's third law is exact for a circular
orbit, whereas in system B the corresponding law is

B. nial=km (1-32/a)
In system A the equations of motion are
}'n..re'z,,—/u/# = (- 267+ 3T /T rapr?),
'5?5 (v°6) = 7 (276),

the dot standing for differentiatlion with respect to the time.
In sys“tem B they are

T.-762+/U/T2 = ?\/*92-)- 3%77'2 +‘4/“/7'3>>
ﬁ—(r‘é)= Alar8),
where /i = ne’=c*A, n is the mean motion, and a is half the
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major axis. If the right-~hand sldes of the equatlons are put
equal to zero we have the ordinary Newtonlan equations of elliptic
motion. Hence, since A 1s a very small parameter, the complete
equations may be solved by any of the conventional methods of the
planetary theory, treating the right-hand sides as if they were
the partial derivatives of the ordinary disturbing function with
respect to r and 6 .

In order that the results may be applicable to any
planet, I make the developments in powers of e, the eccentriclty,
neglecting powers above the second, and I take v} » the mean
anomaly, as the independent variable. Then we have for the four
components of the right-hand sides of the equations.

1, 76/ma =1+ % e +3ecosf + 2 e cos 24
2.
e
4,

Hansen's multipliers A and B (not to be confused with

the letters denoting two different measures of the radius vector)

are

A=

B =
where denotes an which 1s held constant in integration or
differentiation.

Hansen's T is given by

which 18 equivalent to



-

Working with the last formmla, and belng careful to
adjust the constants of integration so that ., the perturbation
of the mean longltude, contains no constant term, no term pro=-
portionsl to the time, and no term strictly proportional to sin
I find for the four perturbations corresponding to the four numbered
expressions above,

1.
2.
3.
4,
1.

It 1s noteworthy that only three constants of integra-
tion appear 1in the developments as a consequence of the radlal
"forces" contalning only cosines and the tangential "force" only
sines; the corresponding physical condition is that the results |
are valld no matter where the perihelion may happen to be, as muat
necessarily be the case In a spherically symmetric fileld.

Multiplying the four portlons by s and by -2, +3,
+2, 42 for case A, and by -1, +3, +4, +4 for case B we obtain
for the final perturbations |

A,
B,
A,



All of the developments have the property that the
lowest power of e in a coefficlent 1ls the same as the multiple
of in the argument, unless it vanishes as 1t does in the constant
part of for system A, and that only odd powers of e are
assoclated with odd multiples of s, and only even powers with
even multiples. Thus in every case the lowest neglected power
of e is two higher than the highest one shown.

It is easily shown (see Clemence 1946) that the portions
of the perturbations factored by nt are precisely equlvalent to
a secular advance of the perihellon amounting to for both
systems A and B, a well-known result. For the other terms,
neglecting the cube and higher powers of e, we may put s
the perturbation of the true orbital longitude, for s and ’
the perturbation of the radius vector, for . If we then express
the coefficlents in seconds of arc for ard in kllometers for we
obtaln

A.

B,
where a 18 measured in astronomical units, and

A,

B,
for the corrections to the Newtonlan values of the coordinates,

The corrections to the longitude are too small to be
detected in the present state of astronomy. As to the radius vector,
1f 1t were possible to measure the distance to Mercury with a

precision of a kilometer for a single measurement, and to continue
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the measurements over several revolutions of the planet, 1t should
be possible to detect the principal periodic term., Such detectlon
could not, however, be regarded as a test of general relativity,
as Dirk Brouwer has pointed out to me, because a small correction
to the eccentricity of the orblt would have precisely the same
effect on the radius vector, and I have ascertalned that the amount
is well within the uncertalnty in the value of the eccentricity
determined by optical observations. It follows that radar ob-
servations of the precislion mentioned would determlne the
eccentricity (and the longitude of the perihelion) with con-
slderably greater accuracy than is attalnable by any other method,
not only for Mercury, but for any planet to which the method can
be applled. The relativity-effects then would have to be sought
in the terms factored by the square of the eccentricity, which
amount at most to half a kilometer.
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