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SUMMARY

If the early Universe was highly anisotropic, pfimordial black holes may
have formed prolifically (despite previous claims to the contrary) even if the
initial density fluctuations were small. However, the holes would initially be
endowed with an immense amount of shear, so it is not obvious that they would
evolve into the conventional type of stationary black hole envisaged by the
"No Hair'" theorem. If they do settle down to a stationary state, it may only
be on a cénsiderable timescale; and in principle there might exist soliton-type
solutions which represent holes with shear which persists indefinitely. Such
"shear hell holes'", as we term them, could have even more dramatic properties
than the usual stationary holes: in particular, they might be prolific
generators of gravitational radiation and they could be associated with

interesting quantum effects.
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INTRODUCTION

Traditionally it is assumed that a black hole will rapidly settle down
to a stationary state. Any initial perturbations in the shape of the event
horizon, reflecting asymmetries in the matter configuration which originally
collapsed to form the black hole, are assumed to be radiated away as
gravitational waves. Since it is now known that stationary black holes can
be characterized1_4 by just three parameters - their mass M, angular
momentum J and electric charge Q - this implies that, shortly after their
formation, ali black holes are described by one of the standard stationary
solutions. (For simplicity we henceforth assume thét J=Q=0,) However,
the assertion that a black hole rapidly setfles down to a stationary sﬁate
has only been proved in the context of weak perturbations, when the unperturbed
background geometry can be treated as nearly Schwarzschild. It has neither
been proved analytically nor indicated by numerical experiments in the
situation where the initial fluctuations are so large and non-linear that
the background cannot be treated as Schwarzschild.

In this essay we will discuss a particular situation, gravitational
collapse in an anisotropic universe, where the initial perturbation in the
horizon configurathf {associated with shearing motions) is very large indeed.
In this context the assumption that a black hole rapidly settles down to a
stationary state must be questioned very seriously. If it transpires that the
shearing motion of the event horizon can persist for a long time, such a
hole could have very bizarre properties indeed.

Imagine a black hole whose surface is distorting very violently. One
envisages it behaving rather like a localised Mixmaster universe, puffing
out first in one direction and then another because of extremely high
anisotropy in the local three-space curvature. Such an object would pose a
daunting threat to any astronaut who happened to stray too close to it. If

he were located a few thousand kilometres from a solar mass Schwarzschild




hole, he might consider himself reasonably safe. But his complacency
would turn into a singular state of distress should the hole turn out to
be violently shearing. The hole might suddenly squelch out in his
direction, envelope him and suck him into its singularity before bouncing
out towards the next unsuspecting astronaut!

If such objects existed in the real Universe, they might well be
described as "hellish". 1Indeed the above, somewhat melodramatic, description
is presented merely to motivate calling them ''shear hell holes". We claim
that such objects might have formed (and formed prolifically) if the early
Universe were highly anisotropic and inhomogeneous. In fact, the relevant
question is not whether such objects exist (since, in the absence of precisely
spherically symmetric collapse, even the usual sort of Black hole may go
ﬁhrough a shearing phase), but rather how long such an object can persist
before its oscillations are dissipated by gravitational radiation damping.

In this essay we discuss, firstly, why shear hell holes might form in an
anisotrqpic universe and, secondly, what their mathematical and physical

characteristics might be.

GRAVITATIONAL COLLAPSE IN AN ANISOTROPIC UNIVERSE

The expansion of the Universe cannot be exactly isotropic. The existence

of density fluctuations (as required for galaxy formation) necessarily

induces local shearing motions and, in addition, there may be a global
(homogeneous) shear field, perhaps a relic from an early chaotic phase5 in
the history of the Universe. Such a homogeneous‘shear can be described by

a quantity o, with units (time)—l, which specifies how much the cosmological
expansion rate varies with direction. Although the shear is known to be
small now, it may have been large at early times because ¢ increases with
reshift like 23 in the simplest models. Indeed the efféctive energy density
associated with the shear ~ 02/G mﬁst dominate the density of the Universe

before some time tS related to the present value of ¢ .




. . . . 6
The simplest homogeneous anisaotropy~dominated model, the Kasner solution
(Bianchi 1), contains only one more parameter than the Friedmann model: the

three cosmological scale lengths Ri (i=1,2,3) go like tPi where I Pi =z P.2 = 1.

i

The Kasnef indices Pi (when suitably ordered) .are thus constrained to lie in
the range -1/3 < P3 <0< P,< 2/3« P1 < 1, so the Universe expands in
directions 1 and 2 but collapses in direction 3. Despite its simplicity, the
Kasner model is a behavioural paradigm for more general anisotropic cosmologies.
Extra kinématic features tend to be unimportant at early times and even the
most complicated homogeneous models like Mixmaster (Bianchi 1X) display Kasner-
type behaviour most of the time (although the values of Pi change periodicallyg).
We thus confine attention to the Kasner model in the following considerations.

The problem of black hole formation in an anisotropic Kasner universe’has
been studied in a previous papers. If one considers a region with an initial
density fluctuation (be it in the shear or the matter density), one can show -
by considering the perturbation to the equation for the expansion rate - that
its volume will eventually stop increasing provided a quantity which can be
interpreted as the total initial energy in the region 1is negative. However,
density fluctuations grow at different rates in different directionsg, which
means that a bound region will not in géneral stop expanding in every direction
at the same time. Alternatively, if one considers regions which are binding
in all directions at any particular time, they will not in general be spherically
symmetric. The behaviour of a bound region in a Kasner universe is therefore
much more complicated than that of a (spherically symmetric) bound region in
an isotropic universe, essentially because the density inhomogeneity couples with
background shear to first order. As the region collapses and bounces in

various directions (perhaps passing through pancake and spindle configurations),

it will squelch around violently until equipartition and virialization can be




achieved. This reflects the fact that, even after the volume of the region
has stopped increasing, it may still be endowed with a lot of shear energy.
Indeed, just as in the Kasner background, the shear energy within the region
may be much larger than the rest mass energy of its matter content.
" The manner in which such a region could collapse to a black hole is far

from clear.It might just collapse to a conventional stationary black hole

by dissipating its shear energy first (although a large fraction of the
diséipated energy must still go into the collapsing region). On Fhe other
hand, it might collapse without dissipating its shear at all to form what
we have termed a shear hell hole. Still more dramatically, it might

produce a naked singularity without any horizon. In any case, if

collapse is to occur at all, the region must be bigger than the
- Jeans length when it stops expanding. The Jeans length is the scale

on which the gravitational binding energy of a region at maximum

expansion equals its internal energy, where we must account for the

fact that both these terms include and are indeed dominated by a
contribution which either derives from the dissipated shear kinetic energy
or is the shear if it has not been dissipated. This naively implies that the
Jeans leng;h is of order the horizon size - or more precisely, since the
region 1is not spherical, the Jeans volume is of order the horizon volume8.

Since a bound region cannot be bigger than the horizon size in any direction

. . . . ‘ . 1
(else it would close up in that direction and form a separate closed universe

this means that a region can collapse to a black hole only if at maximum

O)’

expansion it has of order the horizon size ~ (I-Pi)_lct in all three directions.

It is very unlikely that such a condition would be satisfied, and this led

us to conclude in our previous paper that no black holes could form in the
anisotropic period before tg-

This argument is incomplete, however, because it neglects the fact that

the violent space-time oscillations within a collapsing region will generate




relativistic shock waves — indeed such shock waves might play a major role
in dissipating the shear energy into internal energy. Simple energy arguments

show that the Lorentz factor I' of these shocks would be of order (shear

/2

energy in region/rest mass energy in region)1 . If the ratio of these

energies at time t is the same as the ratio in the Kasner background, one

(f-1)/2
g)

infers I ~ (t/t where p = fp (0 < f < 1) is the equation of state

of the matter. This means that the Jeans length is reduced by a factor of
orderl“_yg(t/ts)(l_f)/a, suggesting that black hole formation is easier than

in an isotropic universe for t << tg. (In an isotropic Universe, the Jeans

0 . . . s
length1 is ~ J/f ct.) In this case, the conclusion of our previous paper

is reversed: we would now claim that black holes can only form before tg

(because, if the initial density fluctuations were large enough for holes to

form after tgs they would be overproduced before ts) with masses extending

. te )
up to 105 (T%} MG. Furthermore black holes can form before ts even if the

initial density fluctuations are quite small.

SHEAR HELL HOLES

We now discuss the question: into what sort of black hole dqes such a
region evolve? If one considers a star with small perturbations from spherical . 'N
symmetry undergoing gravitational collapse, one does not expect these perturbations
to grow dramatically as they fall within the event horizonll. Indeed, from
the point of view of an external observer, all perturbations (either in the
shape of the star or its accompanying fields), éther than those associated.
with conserved multipole moments (i.e. mass, angular momentum, and charge), die
out as the star approaches the horizonlz. Any dynamiec perturbations are
radiated away as gravitational and electromagnetic waves and these waves
merely leave behind a '"tail" which, for an initial l-pole perturbation,

-(21+2)

decays like t (For a shear perturbation 1=2.) Any static perturbation,

frozen into the star as it crosses the horizon, is prevented from propagating




‘to an external observer because of the curvature of spacetime: the
corresponding "infinite wavelength'" perturbation is completely reflected

by a gravitational barrier just outside the hcrizonlz. An external observer
therefore expects to see the hole settle down to one of the standard
stationary solutions and this is the basis of the famous "No Hair Theorem'.
Certain types of perburation, the so-called quasi-normal-mode perturbations,
damp out exponentially on a timescale13 of order GM/c3 and it has been
conjectured (but not proved) that all perturbations will be channeled into
these quasi-normal—modesla. In this case all black holes would settle down
to a stationary state on the Schwarzschild timescale.

Now all these arguments assume that the background geometry is nearly
Schwarzschild (or Kerr if the collapsing star is rotgting). They do not
apply if the initial perturbations are highly non-linear and if the background
geometry is more complicated. It is not known what a shear hell hole
backgrouﬁa would look like but it certainly would not be Schwarzschild.
Since the collapsing region is something like a Mixmaster universe,pulsating
between a minimum and maximum radius along each axis,one envisages a black
hole solution which bears a comparable relationship to Mixmaster as
Schwarzschild does to the "k=+1" Friedmann universe (which, it is recalled,
models the collapsing matter in a spherically symmetric situation). It is
far from obvious that sucﬁ a solution would quickly settle down to a
stationary state. In particular, the notion that there are normal—modé
perturbations which decline exponentially and that there is a potential
barrier which perfectly reflects long wavelength perturbations is questionablé.
Despite these reservations, it is not inconceivable that gravitétional
radiation could damp large fluctuations relatively quickly: a simple order—
of-magnitude argument irnplies15 that the gravitational radiation damping

-5/2

timescale is of order (GM/RB) (R/RS) , where RS ~ GM/C2 is the Schwarzschild

radius, and this timescale becomes comparable to the Schwarzschild timescale




when R ~ RS (i.e. as the region falls through its event horizon). However,
this argument is also based on linear considerations and so is unreliable.
While it is possible that a violently shearing hole would settle down to
a stationary state in a Schwarzschild timescale (indeed, in the spirit of
the No Hair theorem, most people would like to assume as much), it certainly
has not been proved. |

ff a black hole does not quickly radiate away its shearing motion and
can persist as a non-stationary shear hell hole, what does it do? One
possibility is that it does séttle down to a stationary state but not on a
Schwarzschild timescale. (Since there are extra dimensionless parameters in
the problem, like the ratio of the shear energy to the rest mass.energy,:the
Schwarzschiid timescale 1is not the only one which can be constructed.) A
more dramatic possibility is that there may be non-linear solutions to

Einstein's equations in which a shearing black hole can persist indefinitely.

A shearing hole in a Kasner universe, for example, might be able to preserve
its shear by feeding off the background. We have not yet found such a
solution but there are, after all, many situations in which non-linear effects

are reponsible for the existence of higher order stable structures.Indeed there is

evidence that such structures are the final evolution products of arbitrary
initial data setsl6. What is important is that these non-linear structures
are qualitatively different from their linear counterparts,no matter how:
small their amplitudes. An interesting clue in this direction may come from
a consideration of the soliton solutions to Einstein's equations which have
already been discovered. For example, it is known that certain types of
perturbations to a Kasner universe can be represented as single-soliton
solutions. It is also known that the Kérr Elack hole can be represented as
a two-soliton solution17. (These solutions are metrics which;although
inhomogeneous, are very closely felated to the Mixmaster universe of
Bianchi type IX.) This suggests that one may be able to represent a

shearing black hole in a Kasner background by some sort of multi-soliton solution.




Finally, we speculate about some of the interesting astrophysical
properties of shear hell holes. One possibility is that they might be
prolific generators of gravitational radiation. The energy density of
gravitational waves (in units of the critical density) generated by the
usual sort of primordial black holes would be Qg ~ BQBZB-l, ﬁhere

Q_ is the density of the black holes, z

B is their formation redshift and

B
B 1is the efficiency with which they generate gravitational waves.

Since z_ is very large ( ~ 1010 if t

B n~ 1 8), the gravitational wave

B
density is tiﬁy even 1if Qg v 1. However, if the generation of the
gravitational waves is postponed (as it is in the shear hell hole scenario)
until some redshift Zg’ Qg could be quite large. Essenfially the shear
hell holes would be bottling up the initial shear energy of the Universe

to prevent its rapid adiabatic decay and releasing it during the isotropic
phase as gravitational radiation. Perhaps the most plausible possibility
is that the holes would continue to shear until the background universe

becomes isotropic at t In this case, although the gravitational waves

g
generated would have a small density today (unless they were channelled

into Bianchi type modes which grow in timé, they may have played an

important cosmological role at early times. They may even have provided

an important isotropilzing effect; in this case, the presence of

small inhomogeneities in an anisotropic universe could indirectly cause its
isotropization!

Another interesting property of a shear hell hole might be its quantum
mechanical effects. Because of such effects even stationary black holes
emit particles and eventually completely evaporatels. However, a black
hole whose horizon is highly non-stationary, where the gravitational field
is changing even more rapidly than it does in spherically symmetric collapse,

might be expected to have particle production effects of an even more
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