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Abstract

The action of quantum fluctuations of the gravitational field
may be regarded as the origin of the dissipative processes associated
with Hawking radiation. In this picture the black hole possesses
internal coherence by virtue of the localization of its mass. The
cumulative effect of the quantum fluctuations in the geometry is that

this coherence is corrupted and the mass is sapped away.



Recent work on black holes, culminating in Hawking's 1 remarkable
discovery of their quantum radiance, has shown that they obey the laws
of thermodynamics as applied to equilibrium states and reversible pro-
cesses.2 We wish to argue that they conform also to the principles of

irreversible thermodynamics, in the form of a fluctuation-dissipation

theorem.3 The dissipation is associated with the absorption of ordered
energy by the black hole and its subsequent reradiation by the Hawking
proééss. It has been shown4 that Hawking radiation has the same sto-
chastic properties as black body radiation, and so is completely dis-
ordered. A black hole is thus a perfect dissipator.

To help understand this property of black holes we apply the theory
of dissipative processes.5 The theory is based on the following ideas:

a) A dissipative system D possesses a large number of closely
spaced energy levels lying near to the ground state.

b) In consequence, when this system is coupled to another system S,
it exerts a force on it which fluctuates in time and is usually uncor-
related with the natural fluctuations of S. The cumulative effect of
this fluctuating force is to dissipate the excess energy of S by
distributing it among the many energy levels of D.

c) The effect of S on D, in linear approximation, is to produce
a deviation from its equilibrium state which cannot be distinguished from
a purely spontaneous fluctuation of D.

d) The fluctuating force exerted by S represents a source of
noise power as well as of dissipation. The fact that S and D can
come into equilibrium depends on both the dissipative and exciting aspects

of the force. The rate at which equilibrium is apprdached is thus



determined by the statistical properties of the fluctuations. The formal
statement of these relations are the fluctuation-dissipation theorems.
The first of which was discovered by Einstein.6

We now apply these ideas to the dissipative action of a black hole,
confining ourselves in the main to the dissipation of gravitational dis-
turbances.

It has been known since the work of Callen and Welton that it is
possible to ascribe radiation damping to a coupling between the radiating
charge and the electromagnetic vacuum. In order to proceed in this same
spirit we shall briefly examihe the effect that the vacuum fluctuations
that are present in the Minkowski vacuum |0> have on a charge that is
uniformly accelerated. The simplest example bf this type is that of a
scalar charge contained within a rigid box that is subject to uniform
accelerétion, this calculation was first performed by Unruh7 and has
since” been elaborated by DeWitt.8

The analysis is facilitated by the introduction of accelerated
(Rindler) coordinates defined in terms of standard Minkowski coordinates
by |

t = £ shrt X = £ cht

which have the property that a worldline of constant £ is a path of
uniform acceleration g_l. It is supposed that the coupling of the particle

to the scalar field ¢ is achieved by an interaction Lagrangian of the form

Ling = m()6(0

where m(x) is a monopole charge and ¢ is a small coupling constant. If



we adopt the convention of denoting ¢ (x) evaluated at x(t) = (1,£,Y,2)
by 1) and similarly for m(x), then it is found that the rate at which
the detector makes transitions from an energy eigenstate corresponding

to a frequency v, to another eigenstate corresponding to another frequency

vy T vt v is
R(vlvl) = 52|<v1+v|m(o)|v1>|2 j dTelvT<0|¢(T)¢(O)IO> (1)
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and the last equality follows by explicitly evaluating the integral, and
is just Unruh's result. We wish to emphasize that (1) is a fluctuation-
dissipation relation since we might wish to consider an ensemble of such
boxes which are uniformly accelerated. The particles will then make
transitions among their various energy levels at a rate given by (1).

R(v,vl) will determine not only the equilibrium distribution of the

particles between the energy levels but it will also determine the

dissipation rate of any correlations that might initially be present.

We note also that (1) shows that R(v,vl) is essentially determined by
the Fourier tranform of the auto-correlation function of the scalar field
which, by the Wiener-Khinchin theorem, is related to the power spectrum
of the noise along the worldline of the box.

The observation that (1) is a fluctuation-dissipation relation does
not of itself explain the remarkable fact that the spectrum in (2)
should be Planckian. This property appears to be intimately related to

the causal and analytic properties of the manifold.9



Let us now consider a similar ensemble that is constrained to
remain near the horizon of a Kerr black hole and to corotate with it.

That is, we take the ensemble to follow the path
x(1) = (t+t,r,6,¢*01)

where (t,r,0,¢) are Boyer-Lindquist coordinates and @ is the angular
velocity of the horizon.

Since we are mainly concerned with gravitational disturbances we
shall consider the particles as weakly coupled to the flucfuations in
the gravitational field rather than those of a scalar field. The path
of the boxes follows the trajectory of a Killing vector so the regime
inside each box is static. We would anticipate that the particles would
make transitions between their various energy levels at a rate dic?ated
by the level of the vacuum fluctuations in much the same way as in our
previous example.

As a measure of the level of vacuum activity we shall take the Fourier
transform of the autocorrelation function of thé'gravitational shear o (in
the Hawking Hartle tetrad). We choose ¢ since it determines all the non
trivial perturbations of the metric,10 moreover, since it is gauge invariant
it is a suitable variable to quantize. The problem is, of course, not well
posed until we define the 'vacuum state' about which the gravitational field
is fluctuating. Of the three 'vacua' usually considered, namely those of-
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Boulware,11 Hawking and Hartle,” ™ and Unruh,7 only that of Unruh meets the

requirements that the renormalised value of physical observables are well

behaved on the future horizon and that at large radii it corresponds to
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an outgoing flux of black body radiation. In this sense then, the



Unruh vacuun seems to approximate best the state that would obtain fol-
lowing the gravitational collapse of a star. We shall therefore compute
the expectation value of the auto-correlation function in the Unruh

vacuum. A direct calculation shows that asymptotically as r»r_

@ ; 2., 2

*
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.k 1is the surface gravity of the hole, r_ is the radius of the outer
horizon and by o(t) we mean o(x) evaluated at x(t).

The factor wZ + 4K2 that occurs in the numerator is a density of
states factor14 (for a field of spin s the corresponding quantity would
be w2+SZK2). So that we see that (3) is in fact a blackbody spectrum.

Let us now consider the rate at which a black hole dissipates a
gravitational perturbation. If the disturbance is purely gravitational

*
and oo 1is slowly varying then to lowest order the areaof the horizon

increases at a rate given by15
%é = %— J oo* dA (4)

where v is a suitably defined time coordinate on the horizon. Since the
black hole entropy is proportional to the area this formula determines

the dissipation rate in a macroscopic process such as the slowing down of

a rotating black hole by a moon. The same equation may be shown to govern
the dissipation in a microscopic process provided that the symbols are
interpreted appropriately. (4) shows that the dissipation rate is quadratic
in the perturbation, so that the black hole is a linear system in the sense

of Callen and Welton.



In virtue of this we can fit into our picture the emission by a
black hole of Hawking gravitational radiation. We know from macroscopic
theory that a non-stationary black hole with a non-vanishing shear on
its horizon would radiate gravitational waves to infinity, and in con-
sequence would reduce the shear of the horizon and approach a stationary
state. Now according to our point of view a linear system (that is one
with no memory) behaves in the same way in a given configuration whether
it reached that configuration by a spontaneous fluctuation or by an ex-
ternally induced perturbation. Accordingly we would expect that the quantum
fluctuations of the shear would also lead to the emission of gravitational
radiation, and since the shear fluctuations have the stochastic properties
of black body radiation at a temperature 2m/x we would expect the gravita-
tional radiation to have the same properties. This is, of course, just
Hawking's result. There is an important proviso, however. There will be
a net emission of gravitational radiation prdvided phase relations have
been chosen which do not suppress the flux. If the black ﬂole is the result
of stellar collapse then one would not expect the collapse to respect cor-
relations that might initially be present. This is essentially Hawking's
point of view. By contrast, if we are dealing with an eternal Kruskal
black hole, it is not clear whaf are the 'correct' initial conditions to
take. The problem is an academic one and is usually phrased in terms of
choosing a particular 'vacuum state'; if one were to choose either the
Boulware or the Hawking vacuum there would be no net flux at infinity since
in these cases correlations have been chosen which exactly suppress the

radiation.



The resulting situation is then essentially the same as for an atom
in its ground state coupled to the electromagnetic vacuum. There is no
real exchange of energies between the atom and the electromagnetic field
because the zero point fluctuations of the electromagnetic field drive

those of the atomic moments and produce complete interference.
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