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Abstract

We discuss the theory of non-critical strings with extrinsic curvature embedded in a
target space dimension d greater than one. We emphasize the analogy between 2d gravity
coupled to matter and non self-avoiding liquid-like membranes with bending rigidity. We
first outline the exact solution for strings in dimensions d < 1 via the double scaling limit
of matrix models and then discuss the difficulties of an extension to d > 1. Evidence from
recent and ongoing numerical simulations of dynamically triangulated random surfaces
indicate that there is a non-trivial crossover from a crumpled to an extended surface as
the bending rigidity is increased. If the cross-over is a true second order phase transition
corresponding to a critical point there is the exciting possibility of obtaining a well defined

continuum string theory for d > 1.
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String Theory is a powerful model, capable of unifying the Yang-Mills interactions
of matter with the universal interaction of gravity. It softens the short distance (ultra-
violet) divergences of Einstein Hilbert gravity by smearing out points to one-dimensional
extended strings. These strings sweep out two-dimensional Riemann surfaces as they evolve
in Euclidean time. In the first quantized description of string theory one may view the

string coordinates describing the embedding of the worldsheet in the target spacetime as
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a collection of scalar fields living on the worldsheet. The worldsheet, however, must fluc-
tuate as one is required to integrate over all admissible metrics to enforce diffeomorphism
(reparametrization) invariance. In this way new intrinsic degrees of freedom (the confor-
mal modes of the metric) enter the theory. From the statistical mechanics viewpoint one
is thus dealing with an exciting class of models described by certain order fields living on a
fluctuating substrate. Averaging over metrics corresponds to being in the universality class
of translationally and orientationally disordered fluctuating surfaces or membranes. These
are often called liquid-like membranes, as opposed to crystalline or hexatic membranes
that are translationally or orientationally ordered respectively [1]. The remarkable fact is
that these statistical mechanical models defined on a random mesh are, in a sense, easier
to solve than the conventional models defined on a rigid regular lattice. This is because
diffeomorphism invariance reduces the number of effective degrees of freedom. It is even
possible to admit fluctuations which change the topology of the surface (growth or collapse
of handles).
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Fig.Z. Fluctuations in the topology of the worldsheet .

This is certainly of great interest as a model of gravity but also provides the basis for an
exploration of membranes. Recently particularly simple models corresponding to certain
types of conformal matter coupled to 2d-gravity have been exactly solved including the sum
over all possible topologies. The outline of the solution together with the relation to 2d-
gravity and extensions to more realistic random surfaces (flexible liquid-like membranes)
is discussed below.

Let us start by considering the extreme case with no matter (order fields) at all. All
that remains is the smile on the Cheshire cat - a fluctuating 2d-surface. This is clearly
two-dimensional gravity. Since there are no embedding string coordinates it is also a model
of strings in zero dimensions. The Einstein-Hilbert action with a cosmological constant

term for 2d gravity is

Slo) = 10 || PevaR+u [ Pe3, 1)

where gqag(€1,&2) is the 2d metric of the Riemann surface ¥ with coordinates ¢; and &;.
The partition function Z then depends on two variables, Newton’s constant G and

the cosmological constant u
2(G.u = [(Dg) =511 &)

where the path integral is over all admissible metrics of Riemann surfaces £. In two
dimensions the action (1) is simple since the first term is a topological invariant by the

Gauss-Bonnet theorem

S = —_Z(g:) + pA(T) , (3)



where x is the Euler characteristic of ¥ and A is the area. x is related to the number of
handles, or genus h, by x = 2 — 2h, where for simplicity we are assuming ¥ to be closed

(without boundaries). The partition function thus reduces to
Z[G,ul =) / dAeic e HAQL(A) (4)
h
where §;(A) is the density of states of Riemann surfaces ¥ of fixed area A and genus b,
(4) = /( . Dues (5)

Q4 (A) is very difficult to calculate as h increases and the sum over genus in (4) diverges [2].
The above expressions are all, in fact, ill-defined. To give them meaning we must regu-
larize the path integrals. One approach is to discretize by replacing ¥ by a lattice. A
particularly concrete and appealing discretization is to consider all triangulations (or more
generally cellular decompositions) of ¥. The surface is thus replaced by a discrete set of
n points (vertices) labelled by an index i. The connectivity of the lattice is described by

the adjacency matrix

(6)

c { 1if : and j are connected by a link
ij =

0 otherwise

This defines a metric on the lattice by fixing all links to have length one. Thus all triangles
(cells) in the triangulation are equilateral and of fixed area. The Euler characteristic follows
from Euler’s relation x = V —E+F, for V vertices, E edges (links) and F faces (triangles).

Local curvature is defined by means of the deficit angle
6 —q;

R; = 3 g ; (7)

where ¢; is the coordination number of vertex :
g = Z Cij. (8)
J

To simulate the integral over metrics the adjacency matrix must be allowed to fluctuate so
that the coordination number of a node becomes a dynamical degree of freedom. The local
environment of a node is constantly changing. This considerably complicates the study of

such models from a computational point of view but also makes them more interesting.
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These models are called Dynamically Triangulated Random Surfaces DTRS [3-6]. The

basic move to update Cj; is a flip on a fundamental parallelogram of two triangles sharing
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a common edge. The discrete version of the partition function (4) replaces integrals over

metrics by sums over admissible triangulations and may be written in the form

ke 2-2A >
2G,H =Y Y ez, (9)

h=0 n=0
where Zj,, is the number of distinct triangulations with n vertices and genus h. Zj ,
is a discrete version of Q3(A), since A is proportional to the n for fixed area elementary
triangles. The combinatorial problem of computing Zj , is related to the quantum field
theory problem of calculating the number of distinct Feynman diagrams of a matrix &3
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field theory. To see this one simply constructs the dual of each triangulation. It may then
be shown that the original partition function (9) is related to the solution of the matrix
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model defined by the integral

¢(g,N) = /sz‘D exp{ - N'I‘r(q%2 - %‘I’3)} (10)

over NxN-Hermitian matrices ®. The exact relation is

Z[G7 ul = log¢(g,N) (11)

where one must identify

N=ei and g=e " (12)

It is necessary to take ® to be a matrix to generate topologically non-trivial triangulations.
In fact it is easy to see that N appears weighted as NX for a Feynman diagram of Euler
characteristic x in the perturbation expansion of ¢ in a double power series in g and N [7].

In the continuum it has been shown [8-10] that there is a scaling relation
Qn(A) ~ ebeAAm—3, (13)

where the string susceptibility ~ is

1 5

This result can be generalized to include particular kinds of matter living on the surface.
These are the so-called minimal conformal models [11] labelled by two integers p and ¢. A
key parameter of these models is their central charge which measures the response of the
free energy to local curvature R of the substrate and is roughly a measure of the number

of effective degrees of freedom of the model. For a (p,q) model c is given by

)2
c=1-— —6(p %) . (15)
pq
Note that ¢ is less than one. Since a single scalar field has ¢ = 1 these models of (p, q)
conformal matter coupled to 2d-gravity correspond to strings in less than one target-space

dimension. The result (14) for the string susceptibility is more generally

7;.=2-—(11_2h){25—c+ \/(1—0)(25—c)}. (16)
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It turns out that pure gravity corresponds to p = 2 and ¢ = 3. One sees from (15) that
¢ = 0 as expected. Near the critical cosmological constant p. (or equivalently critical
coupling g.) we see that

/ dAe™PAQL(A) ~ (3 — pe)*™™ (17)
0
and the mean surface area Bl 2
og
A =— 18
() = -2 (18)

diverges as “_37 The string susceptibility v, is clearly the critical exponent for the specific
heat. Diverging surface area is an indication of criticality. Near u. one may thus construct
a continuum limit with associated critical exponents that are universal in the sense that
they do not depend on the fine details of the lattice. The linearity of 4 in the genus A
implies that Z[G, y] is actually a function of only one scaling variable

z = (p— pe) exp{z%(l—\/g)}- (19)

In the Fall of 1989 it was discovered that the complete partition function Z = Z(z) may be
determined by taking the so-called double-scaling limit in which  — p. and N — oo with
z = (pe — p)N2m/2m+1 held fixed [12-15]. To reach the double-scaling limit for a fixed
m requires fine tuning the parameters of a degree 2m polynomial potential in the matrix
model. The integer m is called the order of multicriticality. The critical behavior at the

m** multicritical point is governed by a universal scaling of the density of eigenvalues of

the matrix model at the edge of its support [16]. The order of multicriticality is related to
the particular conformal matter being coupled by p = 2 and ¢ = 2m — 1. The specific heat
f(z) = —8%InZ/du? is given in this limit by an ordinary nonlinear differential equation of
Painlevé I type. For m = 2 (pure gravity), for example, it is

@)+ 3f"(@) ==. (20)

The string susceptibility determining the behavior of f around the critical point f ~
(#e — p)~™, is given by
2 1
= =, 21
Lo (21)
More general (p, ¢) models are described by introducing multi-matrix models.
Note that the original matrix integral for pure gravity is unbounded from below at

the critical point g, = e~#< since it corresponds to a cubic potential. There seems to be
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no escape from this pathology. Pure gravity is still not non-perturbatively well-defined by
the matrix model. Models with matter corresponding to m odd are well-defined, however,
and this may be a valuable lesson. It may be necessary to add certain classes of matter
to 2d-gravity to render the model non-perturbatively sensible. A non-perturbatively well-
defined model may be obtained by introducing a target space supersymmetry in the one-
dimensional string [17]. The target space has one time ¢ and one anticommuting (6, )
dimension. The total central charge vanishes with the Grassmannian dimension cancelling
the d = 1 contribution.

Suppose now that we wish to describe more realistic string models corresponding to
surfaces embedded in a target space of dimensionality d greater than one. The surface
is given by z#(&1,&2)(p = 1,...,d). These models obviously have ¢ > 1. An immediate
problem is then apparent from eqn.(16). According to the continuum results the string
susceptibility is imaginary for 1 < ¢ < 25. This suggests that the model has an inherent
instability. A clearer understanding of this instability is gained by examining the contin-
uum limit of the discrete versions of these models with the additional matter action given

either by the Nambu-Goto action
Sva= [de/h | (22)

where h is the determinant of the induced metric hqg = Oo2#0pz, and Sng is simply the

area of the surface in the induced metric, or by the Polyakov action

S'p=/d2£\/_'q—Va:“Va:,, . (23)

Analytical and computational investigations clearly establish that the continuum limit of
these models is dominated by surfaces which degenerate into a branched tree of tubes of
diameter of order the lattice spacing. These are called branched polymer configurations
and are more one-dimensional than two-dimensional.

The origin of these spikes is clear in the Nambu-Goto formulation since an infinitesi-
mally thin long tube has vanishing area and is therefore not suppressed by the area action.
The large entropy for such configurations eventually dominates the statistical mechanics of
these surfaces. The Polyakov action has been shown to be in the same universality class.

A bending rigidity may be added to the action to suppress branched polymer con-
figurations [18-20]. Consider the extrinsic curvature matrix (Gauss’ second fundamental
form) Kj;; given by

K:; = D,'DJ'.’I:“, (24)
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where D; is the covariant derivative along the surface. This is the only additional term
relevant under rescaling z — Az that may be added to the string action and so will
eventually be generated by radiative corrections in any case. In three dimensions the trace
of K is the mean curvature H = 1/r; + 1/r;, where r; are the principal radii of curvature

of the surface. The extrinsic curvature action is

Spc = / L6 /i(TeK). (25)
Its discrete form may be written as
Sgc=r ) (1-1i;-h;) , (26)
<ij> -

where ¢ and j represent triangles that share a common edge and ii; is the unit normal to
triangle i. Sgc clearly suppresses local fluctuations in the mean curvature of the surface.
But the key question is whether there is long-range order in the normals to the surface.
The bending rigidity is, in fact, a running coupling — it depends on the scale at which it is
measured. A perturbative calculation in the inverse coupling ! reveals that strings with
bending rigidity are asymptotically free in the same sense as Quantum Chromodynamics.
Fluctuations screen the theory and soften the effective bending rigidity as the length scale

increases. The momentum p dependence of « is found to be [18]

-1
Ko

K P) = —— (27)
1 -3 2xlogy

where A is the cutoff or inverse lattice spacing and d is the dimensionality of the target

/K
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space. At large length scales x tends to zero and there is no suppression of fluctuations

in the alignment of normals to the surface. The two-point function decays exponentially

< B, 6) - A0) >= e 6 (28)
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with persistence length £,. Thus the surface is always disordered or crumpled at length
scales r exceeding £,. This conclusion is of considerable interest in the study of liquid
membranes as well. A typical example of a liquid membrane found in nature (which can
also be manufactured in the laboratory) is a lipid bilayer. It consists of two layers of
amphiphilic molecules with polar hydrophilic heads and long hydrophobic hydrocarbon
tails. These bilayers arrange themselves in thin extended sheets. Within the bilayer
individual molecules are quite free to diffuse, so that the in-plane elastic constants turn out
to be very low. Another candidate liquid membrane is a monolayer of surfactant molecules
of an oil-water interface in a microemulsion. In fact any flexible interface between three-
dimensional phases is a candidate system for a liquid membrane model. We see here a

beautiful interplay between string theory, quantum gravity and the statistical mechanics

F\' 6. A biological membrane com osed o1e a lipid bilayer.
¢ d p P Y

of fluctuating liquid membranes.

In the last few years such systems have been extensively explored via numerical simu-
lations on a wide range of computers, including parallel machines [21-24]. There are some
novel but not fully understood results. The full action which is simulated is given by a

quadratic interaction term plus the extrinsic curvature term
S= > (ef -2k +x>_(1-iy-hy) (29)
<i,j> [3,5]
where the first sum is over nearest neighbors and the second over adjacent triangles. For
k < Kc =~ 1.5 one sees the expected crumpled surface (see fig. 7). The radius of gyra-

tion of these surfaces grows only logarithmically with their area corresponding to infinite

Haussdorf dimension dy defined by

R%L ~ AT (30)



where Rg is the radius of gyration. For & > &, the surfaces become extended and consid-
erably smoother with dy approaching two, which would be the value one would get for a
flat surface (see fig. 8). The nature of the cross-over at . is still uncertain. It may be that
the system is undergoing a true thermodynamic phase transition. If it is of second order
then the continuum limit constructed at the critical coupling would be an interesting string
theory corresponding to a real extended 2d surface rather than a branched polymer with
its largely one-dimensional character. In this case it must be that the coupling -'1; ceases
to vary with scale (there is a fixed point of the beta function q‘é—';) at the critical coupling
Kc. At this point there is said to be a crumpling transition. This is the most exciting
possibility from the string point of view because it would mean that we have successfully
regularized and defined the quantum theory of the string with more than one embedding
dimension without any instability arising. The challenge would then be to understand the
exact nature of the continuum string theory at the crumpling transition and the origin of
the fixed point.

It may also be that the observed cross-over is not a true phase transition and that the
persistence length is simply reaching the finite size of the surface that is simulated on the
computer. In this case it could still be that the surface is always crumpled on sufficiently
large distance scales. This is a real possibility for a liquid membrane but would still leave
us without a viable lattice regularization of a string in d > 1 dimensions. We are presently
performing large-scale simulations in three and four embedding dimensions to decide which
of the above possibilities is in fact correct [25].

Finally it is of great interest to extend the technique of dynamically triangulated
surfaces to manifolds of higher dimension; in particular to three and four dimensional
manifolds. One can then simulate say four dimensional Einstein-Hilbert quantum gravity
and seek critical points which provide a non-perturbative definition of a perturbatively
non-renormalizable quantum field theory. This would be a very exciting development.
Preliminary work indeed seems to indicate that there are indeed phase transitions in 4d

gravity [26].
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