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ABSTRACT

This essay covers one portion of our program to find a new
experimental method of improving our knowledge of the Newtonian
gravitational constant (G). According to the NBS Technical News
Bulletin (October 1963) the presently accepted value is 6.670 %

0.015 x 10-11 m3kg-lsec-2 (three standard deviations). The rotating

flat plate experiment utilizes the gravitational interaction between two
optically flat and parallel rectangular solids, one of which is rotating

at constant speed and the other in a resonant mount. The analysis
establishes that the gravitational interaction between the two plates is

a second order gravitational gradient and that the dynamic interaction

will be at twice the rotation frequency of the rotating plate. The magni-
tude of this gravitational gradient is of the order of 10-8 sec-2 and
depends only on the density of the plate for fixed dimension ratios.

Similar experiments have already been carried out at the Hughes Research
Laboratories, and it has been found possible to eliminate all external
sources of dynamic noise from the detecting system except for the internal
thermal noise. An error analysis has been carried out on all the primary
system parameters to determine their required precision. Most of the
technology required in this experiment has been developed in previous
gravitational experiments. We conclude that if the interferometer
techniques are successful and the noise isolation techniques can be
extended so that the instrument noise is predominantly thermal noise,
accuracies approaching one part in 106 should be obtained in the measure-
ment of the gravitational constant. To reach this level of accuracy requires
an experiment time of half a day. The primary limitations of this experi-
ment will be density inhomogeneities in the plates, the stability of the
mechanical damping constant, and the nonlinearities and drift in the
suspension system.



A. INTRODUCTION

We propose a dynamic Cavendish experiment designed to improve
the accuracy of our knowledge of the Newtonian gravitational constant (G)
to one part in 10°. The gravitational constant currently is known to one part
in 500 (three standard deviations). To date, the most accurate of the
various experiments to determine G is the 'time of swing method' of
Heyl. 1 This experiment consists of two concentric torsion balances and
is similar to the Cavendish apparatus (see Fig. 1). One balance is held
stationary while the other is excited into a torsional oscillation. When
the two balances are aligned in parallel, the period of swing is less than
when they are aligned at right angles. In the former position, the gravi-
tational attraction between the two balances adds to the torsional spring
restoring force; in the latter position, it subtracts from it. The gravi-
tational constant is obtained from measurement of the difference in periods
between the near and far positions. The periods were on the order of a
half hour, and could be measured to 0.1 sec.

A method of determining G to higher accuracy currently is
being tested at the University of Virginia.” This experiment is designed
to improve the knowledge of G to one part in 10¥; with future versiogns,
accuracies greater than one part in 102, and possibly one part in 10°,
should be allowable. It also consists of two concentric tcrsional balances.
One balance is free to rotate under the attraction of the second, while the
second is motor-driven and servo-controlled to maintain constant angular
position with respect to the first. Hence, both balances will rotate
through 360°, while a constant torque is being maintained on the free
balance. The angular displacement, after many hours, determines the
gravitational constant.

In trying to push the determination of the gravitational constant
to higher accuracy, all of the various possible experiments ultimately
approach the limitation of precision in determining the relative position
of the masses in the system and the homogeneity of density within the
masses themselves. In addition, many experiments are affected by
spurious nongravitational forces or stray gravitational effects of nearby
masses which are difficult to separate from the desired gravitational
interaction forces between the source masses and the detection masses.

In an attempt to overcome some of these problems, we prcpose
a dynamic Cavendish experiment design which utilizes the gravitational
interaction between two optically flat and parallel rectangular solids.
The generator plate is rotated at a constant speed, and the detector
plate is allowed to vibrate on a mount that is resonant at twice the
rotation frequency of the generator. The grinciple of operation is
basically that used by Forward and Miller’ (see Appendix) The
detecting structure proposed is a plate with a mass quadrupole
moment on a resonant torsional suspension. This type of detector
is similar to that used in Zahradnicek's resonance experiment
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Cavendish type coaxial tor-
sion balance system.

Fig. 1.



Zahradnicek's apparatus consists of the usual two coaxial tor-
sion balances of the Cavendish type. One balance is excited into simple
harmonic motion at the same frequency as the resonant frequency of the
second balance. In both the proposed experiment and Zahradnicek's
experiment, the resonant response of the second balance builds up in
amplitude many times that of an equivalent static Cavendish system,
thus allowing more accurate measurements. Also, both methods are
not susceptible to errors due to the presence of nearby stationary
objects. Since the detector is a resonant system, the response depends
only on the generator masses which are moving at the proper frequency.

The advantages of the proposed experiment over Zahradnicek's
experiment are: (l) the relative position of all the interacting masses
can be measured accurately with interferometer techniques (even
during the experiment, if required); (2) flat optically clear plates can
be machined to'greater precision dimensionally, and can be controlled
with respect to density homogeneity, and (3) the generating masses
are moving at half the frequency of the detector resonant response and,
therefore, predominantly all of the nongravitational noise produced by
the generator is at a frequency which is outside the detecter response
frequency.

B. SYSTEM DESCRIPTION

The system design that we proposed to utilize is shown schemati-
cally in Fig. 2. The heart of the system is two precision ma chined
plates which have optically flat and parallel sides. The upper plate is
suspended by a torsional mount, whose stiffness is determined very
precisely by prior independent measurement of the torsional natural
frequency. Such techniques of stiffness determination are well estab-
lished, since they are used in all of the important gravitational constant
experiments described in Section A. The accuracy required is discussed
in Section D. The torsional fiber is subsequently mounted to a platform
which is vibrationally isolated from external disturbances. The lower
plate is connected to the rotor of a magnetically suspended rotor, which
is driven at constant angular speed by a servo-controlled motor.

Precision alignment of the two plates is obtained by interferom-
eter techniques. Using these techniques, distances can be established
to an accuracy of 5 x 10°7 cm (Ref. 5).

Measurement of angular displacement can be accomplished by
recording the deflection of a light beam off a mirror mounted at the
center of the resonant plate. These methods also have been used
in the experimentz cited above. In particular, the apparatus developed
by Dicke and Roll® gives an accuracy of 10-9 rad. In that experiment,
the source of light for the optical detector was a flashlight bulb. The
light was focused through a narrow slit, reflected off the torsion balance,
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and focused again on a very narrow wire. The wire was made to
oscillate at its resonant frequency, and aphotomultiplier was placed
behind it. When the diffraction pattern centered exactly on the equilib-
rium position of the oscillating wire, the photomultiplier detected only
the even harmonics of the wire fundamental frequency. When the tor-
sion balance rotated slightly, shifting the diffraction pattern off center,
the fundamental frequency became detectable in the photomultiplier out-
put. The amplitude of the fundamental is proportional to the angular
displacement for small angles.

The entire system, including motor, is enclosed in a vacuum
system. This is necessary to avoid acoustic coupling from external
sources, and also to avoid air currents.

It is obvious that in order to detect the very weak dynamic gravi-
tational forces being generated by the rotating plate, the generator and
detector must be well shielded to prevent acoustic and electromagnetic
coupling. The detector is highly sensitive to acoustic noise with a fre-
quency component at its resonance frequency, but experience has shown
that the acoustic noise can be eliminated by placing the detector in a
vacuum chamber at a few milliTorr.

Although an ideal detector is theoretically insensitive to vibra-
tions of the mounting structure, in practice a small amount of the vibra-
tions in the mount leaks into the sensing mode. Therefore, an effort
must be made to keep the detector-mount vibrations at a low level.

This is accomplished by suspending the detector in the chamber with
springs. The generator is isolated from the workbench by compression
springs.

Electromagnetic coupling can occur by direct interaction of the
rotating magnetic fields of the motor with the arms of the detector.
Direct coupling of the rotating magnetic fields is eliminated by using a
phase-locked asynchronous drive. In this mode of operation of the
generator, the generator motor is driven by currents at some higher
frequency so that they do not excite the detector resonant mode. The
amplitude of the drive voltage is controlled by a servo loop so that the
rotor remains at a constant speed. The servo loop can be made so
tight that both the frequency and the phase of the rotor can be held
tightly to the phase of a reference signal from a precise oscillator.

Dynamic gravity devices which are similar to this experiment
in many ways_ have been operated successfully at Hughes Research
Laboratories3 (see Appendix). These devices have been perfected to
the sensitivity level of thermal noise; all other sources of external
disturbances have been reduced to less than this. Because of the simi-
larities in design, we expect that with sufficient effort the noise dis-
turbances of the flat-plate Cavendish experiments also will be deter-
mined predominantly by thermal noise.



C. GRAVITATIONAL INTERACTION

The determination of G requires a precise calculation of the
gravitational interaction of the two plates. This calculation involves
integrating the effect of each element of mass of the rotating plate on
the elements of the resonant plate. The tangential component of the
gravitational force gives the torsional coupling, from which the
response (and therefore G) is determined.

The configuration for calculating the gravitational interaction

is shown in Fig. 3. The gravitational potential G at r due to all
mass in V' is

G - ff—jfi;"r (1)
Vl

where r' is a function of 0 as the plate rotates.

The tangential component of the gravitational force is given by

dF = [vf%{—dz—,'[] i 6 2)

where 0 = unit vector in direction of rotation.

The integral over all r on the plate gives the total interaction:

F:Gpﬂvlr _lr,l dv' av . (3)

In this paper we do not propose to carry out the integration
indicated in eqs. (1) through (3). We shall assume that the mathematics
may be carried out with any desired degree of accuracy, and that the
experiment will be limited only by laboratory measurement.

In order to estimate the gravitational interaction of the two
plates, we shall consider only their gravitational quadrupole moments.
Thus, we lump the mass of each as shown in the configuration of Fig. 4.
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Fig. 3. Calculation of gravitational force by inte-
gration over all elements and taking tan-
gential components.
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In the Appendix, it has been shown that a quadrupole gravitational
detector is excited by a quadrupole generator. The excitation is given by

F = (GMm d/R3) [6]\ cos 0 + 35A3 cos3 0 + % A° cos5 0
L
+é%§A7cos7O+...]sinG (4)

2 2

where A = ld/RZ; R=24"+ dz +h”; M = generator mass, m = detector
mass. O =Qt is the rotational angle, for constant angular frequency .
To simplify, we invoke the trigonometric identities:

80053gsin9:sin49+25in29

32c0559siansin60+4sin49+ll sin 2 ©

etc. (5)
Substituting these into (4) yields

35 ,2 1155

-_— 3 —_— ——
F—(GMmd/R)3A[1 t I3 A+ o3

A4 + .. ] sin 2Qt
(6)

We have dropped the higher order terms in , keeping only the
lowest at 22 . Hence, the dominant driving force on the detector will
be at a frequency which is twice the generator rotation frequency. For
very close distances between generator and detector, h is small
compared with d and £, and we have as the limiting value of A
(for £ =d):

A:ld/Rzz—zl—dz- =%
£ +d

For A = 0.5, the series indicated in (6) converges to 4.0. The exci-
tation then becomes

F=(6 GMmd/R3) sin 2 Qt = 2£I\Z/I_rr_1 sin 2Qt . (7)
d

10



With the driving force given by (7), we may calculate the
detector response from the second order equation for a damped har-
monic oscillator:

da + L a+ wza = T/I=Isin 2Qt (8)
2T o
where
a = displacement angle
wg = resonant frequency
T = detector time constant
T = torque = Fd
I = - moment of inertia = Zmd2
I" = gravitational gradient

Evaluating the driving term,

r = _3 ’ (9)

which has the units of sec_2 and which depends on the mass and size
of the generator (which is the same size as the detector). These
quantities are related, of course, so that we can reduce (9) to be a
function only of density for a plate of fixed proportions.

Figure 5 demonstrates the meaning of the parameters in our
quadrupole model of a flat plate. We fix the relative proportions to be
such that the plates are ten times longer than wide, and one tenth as
thick. The first relative dimension assures a dominant quadrupole
moment, and also allows us to ignore the noninteracting circular mass
distribution in the center. The second dimensional criterion (thickness)
assures that the mass separation distance is negligible. Hence, the
following relations hold for large dimension L:

o(L/2) (L/10) (L/100)

g

o L/2000

11



Fig. 5.

Parameters of flat plate.
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(where p is the specific density of the plate), since M corresponds
to half the quadrupole moment. Also, d = L/4 since the average mass
is approximately this distance from the axis of rotation.

Substituting these values into (9) yields

T = Gp (L>/2000)/(L>/64)

- -2
0.03Gp=2px10 c)sec (10)

This indicates that the gravitational interaction is predominantly a func-
tion of the density of the material used in the generator. Because the
material used must be nonconductive, nonmagnetic, and transparent,
we shall be limited to densities of the various glasses. There are glasses
such as lead oxide with a specific density of 9.5. However, the most
dimensionally stable glass is fused quartz with 2.3. By proper.choiceof
material we can hope to maintain dimensional stability while maximizing
~ density:" In this way, we can expect to obtain gradients on the order of

I' =10 x 10"9 sec”

The deflection due to a gravitational excitation is found from the
solution to (8) at resonance (for zero initial conditions):

a= (Zl"-r/wo) (1 - e-t/T) sin wt . (11)

For a fixed time constant T, the amplitude for fully developed oscilla-
tion is inversely proportional to the natural frequency wge It is there-
fore advantageous to use the lowest wo possible, from the standpoint
of optical measurement of the deflection angle (Section B). The lower
limit to wp is determined by the ability to support the resonant plate
in a 1 g environment.

D. SIGNAL-TO-NOISE RATIO

The magnitude of angular deflection of the resonant plate due to
gravitational coupling depends on the natural frequency and time con-
stant T (see eq. (11)). This amplitude must be large enough to
dominate any nongravitational disturbance coupling by the factor of
precision required in the experiment; in this case we consider a
signal-to-noise ratio of 106.

13



In the previous dynamic gravitational experiments described
in the Appendix, all sources of vibrational, acoustic, electromagnetic,
etc., noise were negligible compared with the thermal noise in the
device. This thermal noise is the limiting sensitivity in any instru-
ment, because it is a thermodynamic molecular motion and depends
only on temperature.

In order to determine the angular deflection of the gravitational
detector due to the excitation of thermal noise, we will calculate the
stored energy in a resonant harmonic oscillator. The energy is stored
partly in the kinetic energy and partly in the potential energy of the
spring:

1 .2 1 2 2
EIQ +-Zwa . (12)

E=KE + PE = o

The deflection a is obtained from the solution of (8) at steady state:
a=a, sin 2Qt . (13)
Substituting (13) into (12) yields (at wy = 2Q):

E = l-I(mzuzcoszmt) + L Iwzazsinzwt = L I<.uzc.2
2 n o 2 n o) 2 0 n

(14)
The amplitude a_ of the oscillations, when the total energy

in the vibrational mode is just the thermal energy (kT) required by
the equipartition theorem, is

o = (2KT 1/2 _ <2kT>1/2 1 (IOOOkT)l/Z 8
n Iwi M wod P w L°

[0}

(15)

Thus, the deflection due to thermal noise depends inversely on detector
size and natural frequency.

To compare the thermal noise response with the gravitational
response, we express the amplitude of (11) as

ay = 2T 'r/wo . (16)

14



The signal-to-noise ratio is then obtained by dividing (16) by (15):

1/2
Lt (_»p 5/2
ag/e, = 3 (1000 kT) L= (17

We see that a /o.n is proportional to the time constant and independent
of natural freq%.ency.

To obtain an accuracy of one part in 106, for example, we must
have a /o. = 106. Using this value, and a nominal dimension of
L =50 ¢m, we solve (17) for v. The resultis v =6 x 104 sec, or
about half a day. This amount of time is a typical requirement for
conducting-a gravitational constant experiment,7 and it is not unreason-
able to maintain stability of the system parameters for that length of
time.

When attempting to make w_, as low as possible, the limit is
determined by the ability of the sensitive torsion fiber to support the
resonant plate in a 1 g environment. In the literature we find that
natural periods of 1000 sec (w, = 0.01 rad/sec) are common for tor-
sional balances on the order of 100 g. A system with L =50 cm

weighs 625 g, which is not unreasonable for a low w, suspension.
Returning to (16) and using the values
T = 6x 104 sec
I = 10E.U. =10x10 %sec”?
w, o= 0.1 rad/sec,

we calculate the gravitationally induced deflection of the resonator:

~-9 4
_ (2) 1ox10 ") (6x107) _
ag = 0.0 0.01 rad ,

which is a fairly large angle. However, for the measurement to be
precise to 10-6 implies a detection sensitivity of 10-8 rad. Using
techniques described in Section B, we can expect to obtain this
accuracy.



E.  ERROR ANALYSIS

Equation (16) expresses the deflected angle as a function of the
gravitational gradient, where I' = GM/d3 for the ideal mass quadrupole
model. In the real case, the gravitational mass is not lumped at two
discrete points, but instead is distributed over the extended dimensions
of the plate. Thus, the values M and d represent the effective gravi-
tational quadrupole moment of the rectangular mass distribution. These
values must be calculated by techniques discussed in Section C (eq. (3)),
following a precise measurement of the physical plate dimensions and
total mass. However, it is of primary importance to facilitate a precise
physical measurement. The mathematical conversion can always (in
theory) be accomplished with any desired accuracy. Because of the flat-
plate geometry, we can measure dimensions to greater accuracies than other
geometries by using interferometer techniques. In this way, we can
measure the dimensions and displacements to 5 x 10-7 cm.

To estimate the achievable accuracy of this flat plate dynamic
Cavendish experiment, let us solve (16) for G (using (10)):

_ 3
G—agd mo/zT M . (18)

The percentage error in will be 5 x 10-7/50 = 10_8, well within an
accuracy of one part in 10°. Also, since M = 103 g, the necessary
precision requires only the measurement of milligrams, and this should
not be limiting. Of course, the uniformity of density over the extended
plate dimensions must also be accurate to one part in 10”, but here again,
because of the flat plate geometry and transparent materials, we can

use optical techniques such as measuring the index of refraction.

We have already stipulated that for a_, to be measured to an
accuracy of 107", the amplitude must build up over many resonant
oscillations to a value of0.01 rad. (This required a system time con-
stant of half a day.) Therefore, the accuracy of angular measurement
should not be limiting. In addition, the system time constant T 1is on
the order of 102 sec, and thus needs to be accurately known only tc
0.1 for the required experimental precision.

In addition to the above, this experimental method also requires
the accurate determination of the resonant frequency w_. Even though
the natural period (Z-rr/wo) is very large (100 sec), a l -6 requirement
would mean that it must be accurate to 0.1 msec.

The separation distance is an implied parameter because, from
(4), R2 = 2d2 + h2. Thus, when h << d, as in the present case, h is
only a second order consideration. For very closely spaced plates of
several millimeters thickness, h ~ 0.2, whereas d ~ 10 cm.

16



The separation distance h is not as critical a parameter as
may have been expected. This may be seen by the following:

R - [2d2 + hz] ~ NZd (1 +h%/4d%)

Evaluating, h2/4d2 = 10—4, which need be known only to three significant

places. To measure h to three significant figures requires an accuracy
of only 10-3 cm.

17
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Generation and Detection of Dynamic Gravitational-Gradient Fields*{

ROBERT L. FORWARD AND LarRrY R. MiLLer}
Hughes Research Laborafories, Malibu, California
(Received 5 August 1966)

We have constructed a generator of dynamic Newtonian gravitational-force-gradient fields and used it
as a signal generator to calibrate the response of the gravitational-gradient detectors being developed in our
research work on gravitational-mass sensors. The gravitational-gradient-field generator is a flat aluminum
cylinder 14 cm in diameter, with four holes than can be filled with slugs of different density to create a
rotating mass-quadrupole moment. The generator is mounted on an air-bearing-supported. motor and
rotated at a nominal speed of 44 rps (2640 rpm). Because of the bisymmetric mass distribution, the dynamic
gravitational-gracient fields generated have a frequency of 88 Hz, or twice the rotation frequency. The
detector is a 12-cm-diam cruciform-shaped structure which responds to 88 Hz gravitational-gradient forces.
The small (107 ¢cm) motions incuced in the detector arms are sensed by piezoelectric strain transducers
attached to the arms near the point of maximum strain. A simple vacuum system, an iron shield plate,
and spring mounts suffice for acoustic and magnetic isolation, since most of the nongravitational noises were
generated- at 44 Hz, the rotation frequency, rather than at 88 Hz, the gravitational-gradient frequency.
Data taken with four different mass distributions varying from 0 to 1000 g and separation distances varying
from 4.8 to 12 cm agree well with the theory, indicating that only gravitational energy was being transmitted
from the generator to the detector. The minimum dynamic gravitational-gradient field observed during
this test was 6X107® sec™ or 0.002 of the earth’s gradient. The equivalent differential acceleration exerted

on the sensor arms by this field was 31071 ¢’s,

INTRODUCTION

E are engaged in a program to design, construct,
and test a research model of a gravitational-mass
sensor which can measure the mass of an object at a
distance by using a rotating system of masses and
springs (see Fig. 1) to detect the gravitational-force-

F1c. 1. Five-in.-diam cruciform gravitational-mass sensor.

gradient field of the object.!'* The ultimate objective
of our work is to develop a small, rugged sensor to be
used on spinning lunar orbiters to measure the mass
distribution of the moon and on spinning deep space
probes to measure the mass of the asteroids.

Our primary goal in this research project is to develop
methods of rotating the gravitational-mass-sensor struc-

* Work partially supported by the National Aeronautics and
Space Administration.

t Presented at A.P.S. Summer Meeting, Minneapolis, Minn.,
20-22 June 1966; also Gravity Research Foundation Essay,
New Boston, N.H., 15 April 1966.

1 Presently on leave of absence on a Hughes Master of Science
Fellowship at the University of California, Berkeley, Calif.

1R, L. Forward, in Proceedings of the Symposium on Un-
conventional Inertial Sensors (Republic Aviation Corp., Farming-
dale, New York, 1963), pp. 36-60.

2 R. L. Forward, Proc. AIAA Unmanned Spacecraft Meeting
(AIAA, New York, N. Y., 1965), pp. 346-351.

tures without introducing large amounts of noise into
the gravitational-gradient sensing mode, so that we
can demonstrate the required degree of sensitivity in
the laboratory without requiring flight tests to prove
engineering feasibility., At present, we have demon-
strated that we can measure accelerations down to
2X107 g’s while operating in a 450-g rotational en-
vironment and a 1-g gravitational environment. The
force level due to the earth’s gravitational gradient is
one order of magnitude below this. The noise problems
are not fundamental and work is continuing on methods
for lowering the noise level to the point where static
gravitational gradients from laboratory masses can
be seen. ,

A concurrent objective of our work is to learn enough

about these structures to be able to predict their re-

sponse to gravitatienal-gradient fields. The theoretical
portion of this work is largely completed and was re-
ported at the ATAA Second Annual Meeting.? In order
to verity the equations experimentally and to develop
a test system for calibrating the gravitational-gradient
response of the various sensors, we have constructed a
rotating generator of dynamic Newtonian gravita-
tional-force-gradient fields and have measured the re-
sponse of one of our sensors to these fields.# This work
is similar to that of Weber ef al. at the University of
Maryland,® who utilized a vibrating rod to generate
1.6-kHz dynamic gravitational fields for calibration of

a gravitation radiation detector.®

3C. C. Bell, R. L. Forward, and J. R. Morris, “Mass Detection
by Means of Measuring Gravity Gradients,” presented at AIAA
Second Annual Meeting, San Irancisco, Calif., 26-29 July 1965;
also AIAA Paper 65-403.

4R. L. Forward and .L. R. Miller, Bull. Am. Phys. Soc. 11,
445 (1966).

& J. Sinsky, J. Weber, D. M. Zipoy, and R. L. Forward, Bull,
Am. Phys. Soc. 11, 445 (1966).

6 J. Weber, “Gravitational Waves,” in Gravifation and Relo-
tivity, H.-Y. Chiu and W. F. Hoffman, Eds. (W. A. Benjamin,
Inc., New York, 1964), p. 100, Chap. 5. '
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DYNAMIC GRAVITATIONAL-GRADIENT FIELDS

DYNAMIC GRAVITATIONAL-GRADIENT-FIELD
GENERATOR

The generator of the dynamic gravitational-gradient
fields is shown in Fig. 2. The drive unit for the generator
is an air-bearing support and drive which was originally
designed to rotate a sensor structure. The bearing
table supports an aluminum mass holder 14 cm in
diameter with four holes, 5.0 cm in diameter and 3.5 cm
deep, on a radius of 4.0 cm. Opposite pairs of holes
can be filled with either aluminum, brass, or tungsten
slugs which slip fit into the holes. The various pairs of
mass slugs were trimmed so that static and dynamic
balance of the generator was achieved even though the
mass holder has a mass-quadrupole moment. When
balanced, the motor—generator combination is silent
under all combinations of speed and niass-quadrupole
loading, except for a slight, high-frequency hiss of the
support air passing through the bearing. The motor
can be operated in either a synchronous drive mode
or a phase-locked asynchronous mode. The readout of
the generator rotation speed and phase is obtained
through a photoelectric pickoff which detects paint
marks on the rotor. This photoelectric signal is used
as the reference signal for a lock-in amplifier, and in
the asynchronous mode can also be used to supply
pulses for the asynchronous.drive controller.

The masses of the various slugs used are

Tungsten 12120 g,
Brass 606.0 g,
Aluminum 2000 g.

If four aluminum slugs are used, the generator has no
mass-quadrupole moment. The maximum mass-quad-
rupole moment of 3.8)X10¢ g-cm? is obtained when two
tungsten slugs are used and the other two holes are
left empty. When the opposing pair of holes is filled,
the effective mass is just the mass difference. The
various combinations possible with our present setup
are listed below.

Holes 1 and 3 Holes 2 and 4  Effective Mass, g
Tungsten Empty 1212.0
Tungsten Aluminum 1012.0
Tungsten Brass 606.0
Brass Empty 606.0
Brass Aluminum 406.0
Aluminum Empty 200.0
Aluminum Aluminum 0.0

The generator rotates at a nominal speed of 44 rps
(2640 rpm) ; because of the bilateral or tensorial char-
acter of the mass-quadrupole generators, the ac gravi-
tational-gradient fields generated are at 88 Hz, or fwice
the rotation frequency. (See Appendix.)

DETECTOR

The detector used in this first test was one of our
adjustable sensors (see Fig. 3). The sensing masses of
the detector are 20-g brass weights attached to the
sensor arms by a screw-clamp arrangement. The weights
have an eccentric cam arrangement which allows for
small position adjustments on the arms. The arms are
cantilever beams of aluminum with a 0.125-in.-thick
base where they fasten to the hub and an outer bending
portion 0.030 in. thick and about 0.70 in. long. The
aluminum hub is designed to clamp the arms rigidly
for good cross coupling and yet allow the arm-mass
assembly to be moved in and out for mass balance of
the final assembly.

The detector has a resonant frequency of 88.45 Hz
in the dual tuning fork or gravity-gradient sensing
mode (see Fig. 7 in the Appendix), a Q of 120 and
an arm length of /=5.0 cm. Under the influence of a
gravitational gradient of T sin2Q#, the arms respond
with a vibrational amplitude of [see Eq. (A21) of the
Appendix ]

A=[Ql/(22)*]T cos2Qt=1.95X10"2 cm/sec? T cos2Q,

(1)
where 2Q =27 88.45 rad/sec.

The readout of the detector vibrations is accom-
plished by sensing the dynamic strains of the detector
arms with barium titanate strain transducers. (Gulton
Ind. type SC-2). A pair of transducers were reversed
from the arrangement shown in Fig. 3 so that opposing
pairs of transducers would produce a differential output
voltage which could be fed into the differential input of
a Princeton Applied Research HR-8 lock-in amplifier.

The dynamic strain in the arms due to their deflection
is a strong function of the details of the design of the
detector arms, and is difficult to calculate accurately
because of the complex mechanical structure used. The
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relationship predicted in Ref. 3 is
e=[(b+L)c/(3L3+bL24-b2L) JA=0.026 cm™!A,  (2)

where 5=0.3 cm is the radius of the end mass, L=1.8
cm is the length of the arm, and ¢=0.038 cm is the
half-thickness of the arm.

The barium titanate strain transducers extend over
a considerable portion of the arm; therefore, they
measure an averaged value of the strain, which is a
maximum at the hub and zero at the end. This average
measured strain was estimated as

€:=0.6e=0.016 cm™A. 3)

The transducers used on the detector had been cali-
brated on a test setup which compared them with a
resistive strain gauge using pure longitudinal strains
at 1600 Hz. The transducer factor obtained under these
conditions was about ¢=0.7)X105 V/unit strain. Thus
the voltage output from this sensor should be approxi-
mately

V=0e=11X10*V/cm A=2.2 V-sec? T cos2Q¢. (4)

NONGRAVITATIONAL COUPLING

It is obvious that in order to detect the very weak
dynamic gravitational forces being generated by the
rotating mass quadrupole, the generator and detector
must be well shielded from each other to prevent
acoustic and electromagnetic coupling. The detector is
highly sensitive to acoustic noise with a frequency
component at its resonance frequency, but experience
has shown that the acoustic noise can be eliminated by
placing the detector in a vacuum chamber at a few
mTorr.

Although an ideal detector is theoretically insensitive
to vibrations of the mounting structure,?® in practice a
small amount of the vibrations in the mount leak into
the gradient-sensing mode. Because of this, an effort
must be made to keep the detector-mount vibrations
at-a low level. This was accomplished by suspending
the detector in the chamber with a spring, and the
chamber from the ceiling by another spring. The
generator was isolated from the workbench by com-
pression sprinigs, and the iron-shield plate was vibra-
tionally isolated from both the generator and detector
by its own support springs (see Fig. 4).

Electromagnetic coupling can occur in two ways:
(1) by direct interaction of the rotating magnetic
fields of ‘the motor with the arms of the detector;
(2) by stray electromagnetic voltages or currents enter-
ing the detector output leads or the preamplifier. The
electromagnetic coupling into the output electronics is
easily checked, since it is independent of the resonant
response of the detector and was found to be un-
observable even in the single-ended mode of operation,
although all data were taken with a differential input
to insure that pickup was not a problem.

Direct coupling of the rotating magnetic fields around
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the generator motor into the detector was found to be
a major problem. At first it was not well understood,
since the detector arms were of aluminum and the
detector masses of brass. This interaction was originally
eliminated by using a phase-locked asynchronous drive.
In this mode of operation of the generator, the generator
motor is driven by currents at some higher frequency,
typically 200 Hz, so they do not excite the detector
resonant mode. The amplitude of the drive voltage is
controlled by a servo loop so that the rotor remains at
a constant speed of 44 rps. The servo loop is so tight
that both the frequency and the phase of the rotor are
held tightly to the phase of a reference signal from a
precise oscillator (General Radio. frequency synthe-
sizer). It was later discovered that the detector had
been assembled with stainless steel screws; when they
were replaced by brass screws, the magnetic coupling
was eliminated and it was possible to take good data
using synchronous drive on the generator.

One important factor aided greatly in the problem
of eliminating the nongravitational coupling between
the generator and the detector. Because of the double
mass in the mass quadrupole, the generator is rotated
at half of the detector frequency. Therefore, predomi-
nantly all of the acoustic and electromagnetic energy
produced by the generator is at a frequency which is
outside the detector-response frequency; only that small
portion of the energy which is harmonically generated
at twice the rotation frequency must be shielded against.
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The generator was designed specifically for the prob-
lem of determining the nongravitational-coupling ef-
fects. If four aluminum slugs are put in the mass holder,
the generator has no time-varying mass-quadrupole
moment and. therefore no dynamic gravitational-gra-
dient field; however, it still retains all of its electro-
magnetic and acoustic properties. A test run was made
at 5 cm separation distance using the four aluminum
slugs. The generator speed was varied from 43 to 45
rps, so that the detector-mode frequency of 88 Hz was
not missed. The detector output remained at 044 nV.
The rotor was then deliberately unbalanced so that
the acoustic output was noticeably increased and the
test was rerun, with the same results. These experi-
ments demonstrated that the response of the detector
structure and sensor electronics to nongravitational
forces arising from all sources, including the generator,
was less than 4 nV,

DETECTOR CALIBRATION

After the test for nongravitational coupling, two of
the aluminum slugs were replaced with tungsten slugs,
resulting in a mass difference of 1012 g. The rotor was
rebalanced and the generator and detector were placed
5 cm apart. The theoretical calculations presented in
the Appendix indicate that at this distance, and with
this size detector, a 1012-g effective mass should pro-
‘duce an equivalent gravitational-force gradient of

I sin2Q=1.25X10"7 sin2Q¢ sec™. (5)

The dynamic gradient has an amplitude of about 0.04
of the earth’s static gravitational-force gradient.

From the theory of operation of the sensors,? this
gradient should cause the gravitational-gradient sensing
mode of the detector to oscillate with an amplitude of
[see Eq. (1)] -

- A=2.5X1071° cos2Qt cm. (6)

Although the amplitude of these motions is extremely
small, of the order of 0.01 of the diameter of an atom,
they are easily measured if piezoelectric strain trans-
ducers are used. Similar sensing techniques used on the
gravitational radiation detectors at the University of
Maryland®#® have measured motions down to 10~ cm.

The motion induced in the detector causes an average
strain in the arms of [see Eq. (3)] '

€=3.9X1012 cos2Q¢. (7

If we assume that the transducer calibration is
0=0.7X10° V/strain, the predicted output of these
sensors under excitation by a generator with a 1-kg
mass difference at a 5-cm separation distance would be

[see Eq. (4)]
V=2.2V/sec? T cos2Q¢
=270 cos2 nV (predicted),

or an rms voltage of 190 nV.

(8)

When the test was run, the actual measured output
voltage of one arm of the sensor under these conditions
was 973 nV (rms). This is much larger than the
output-voltage fluctuations of 4-4 nV under the control
conditions using the four aluminum masses, and is
almost exactly half the predicted output. The reason for
this lower output is not known. It is assumed that it is
a result of the difficulty in obtaining an accurate cali-
bration of the strain transducers, or in calculating the
strain from the deflection A. Further experiments are in
progress to resolve the question. The gravity-gradient
input to detector-voltage output relationship for the
adjustable detector obtained from this calibration is

V'=1.1V/sec’ T cos2Qt. 9)

VERIFICATION OF GRAVITATIONAL COUPLING

Although the control experiments with the four
aluminum slugs and the balanced and unbalanced rotor
indicated that the nongravitational coupling was negli-
gible, it was still possible that the replacement of the
aluminum slugs with the tungsten slugs could change
the magnetic moment or balance of the generator and
cause nongravitational coupling. In order to further
insure that the voltage output seen was caused only
by gravitational-gradient coupling, a run of data was
taken at various separation distances and with various
mass-quadrupole moments. (One of the aluminum slugs
froze in its hole in the generator during the preliminary
work so it was possible to try only four different mass-
quadrupole arrangements.)

At the start of the experiment, the phase of the lock-
in detector was adjusted to give a maximum output
with the tungsten slugs and was not adjusted or peaked
during the remainder of the data run. The quadrature
voltage was monitored periodically to insure the de-
tection of any phase shift in the signal induced by any
variation in the relative strength of the gravitational
coupling and any synchronous nongravitational coup-
ling. No quadrature component was detected during the
data runs.

With the tungsten slugs in the generator, a set of
data was taken while the separation distance was
varied from 4.8 cm to 12 cm. The generator was then
stopped and the tungsten slugs replaced with brass
slugs, resulting in an effective mass difference of 406.0 g.
Without adjustment to the sensor electronics, a second
set of data was taken from 4.8 to 10 cm. The generator
was again stopped and the brass slugs removed, leaving
a void or relative mass difference of —200 g. The phase
knob of the lock-in detector was switched exactly 180°
to account for the effective negative mass, or 180°
signal-phase difference, and the third set of data taken
from 4.8 cm to 8 cm. When aluminum slugs were
placed in all four holes, the output was 0+3 nV.
The data are plotted in Fig. 5.

Curves of detector output versus separation distance
were then calculated and plotted in Fig. 5 for various
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F1G. 5. Dynamic gravitational coupling between rotating mass
quadrupole and cruciform gravitational-mass sensor.

mass-quadrupole moments using the theoretical Egs.
(A-15) and (A-16) derived in the Appendix. For con-
version of the calculated equivalent gravitational-gra-
dient field to sensor-voltage output, we used the cali-
bration point at 5 cm and 97 nV (larger data point).
The two lower curves are the upper curve multiplied
by 0.4 and 0.2, respectively.

The excellent agreement of the data with the theo-
retical predictions in amplitude and phase for various
conditions of mass-quadrupole moment and separation
distance indicates that only gravitational energy was
being transmitted from the generator to the detector.
The minimum dynamic gravitational-gradient field ob-
served during this test was about 6X10~° sec™? (6
Eotvos units) or 0.002 of the earth’s gradient. The
effective differential acceleration on the 5-cm-long de-
tector arms due to this field was

a=Tl=3X10"8cm/sec?=3X10"1g’s, (10)

and the effective force level on the 20-g detector masses

was
F=ma=6X10"" dyn. (11)

SUMMARY

We have constructed a generator of 88-Hz gravi-
tational-gradient fields and used the fields to calibrate
the response of a dynamic gravitational-gradient sensor.
The test involved the transmission of gravitational
energy over distances up to 12 cm by means of dynamic
Newtonian gravitational-gradient fields.

APPENDIX: GRAVITATIONAL INTERACTIONS
BETWEEN A CRUCIFORM DETECTOR AND A
ROTATING-MASS QUADRUPOLE

The model which we will use to calculate the gravi-
tational interaction between a rotating-mass quadrupole
and a resonant cruciform gravitational-mass sensor is
shown in Fig. 6. The generator is assumed to be two
spherical masses of mass M separated by a distance
2d and rotated about their center of mass at a constant
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angular frequency §=%Q. The detector is assumed to be
four spherical masses of mass m on orthogonally dis-
posed massless arms of length I. The sensor is supported
from above so that its center of mass is at a height %
directly above the center of mass of the generator.
The particular mode of the sensor used to sense the
gravitational-gradient forces is the dual tuning-fork
mode (see Fig. 7). It was shown in previous analyses®
that this mode does not respond to vibrational forces
at the mount nor to the direct gravitational force field,
but only to the gradient of the gravitational force field.

The forces on the sensor resulting from the gravi-
tational interaction between the rotating masses M.
and the sensor masses m; typically consist of

Fi(=—GMm/R;?, i=1to4,c=a,bm=m M.=M,

(A1)
where
Ri2=h+r, (A2)
and
r2=ri2=0P+d*—2ld cosb,
ra’=r1>=P2+d?>+2ld cosb,
74a2 =192 =P+d*—2ld sinb,
roi=ro=2+d?+2ld siné. (A3)

However, the components of the forces which drive
the sensing mode of the detector are the tangential

SIDE VIEW

‘F16. 6. Model for gravitational-interaction calculation.
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components of the forces F,

F..'= Fu’= (GMM/RM')d sin0,

Fu’= Fu,'= - (GMM/R»‘)J sin0,

Fg’= Fu'= - (GMM/RM')d COSG,

Fo'=Fy'=(GMm/Ry?)d cosb, (A4)
where the sense of the forces is taken to be positive in
the clockwise direction.

The resultant force F,’ on each of the arms due to
the forces F,.' is given by
Fy/=F/=Fy'+Fy/

=GMmd[ (1/Ru?) — (1/Ry’) ] sind,
F/=Fy'=Fy'+Fy'

= ~GMmd[ (1/Rxw’) — (1/Rx") ] cosb.  (A5)
The response of the detector arms to these resultant
forces has been presented in a previous work by Bell,
Forward, and Morris.? Taking a simplified version of
their Eqs. (38) through (41), we obtain

mAA+dAARA=F!,  i=1-4, (A6)

where A; is the deflection of the ith arm, % is the spring
constant, and d is the damping.

These four equations (A6) describe the individual
motions of the four arms; however, the vibrations of
interest are the motions of the gravity-gradient sensing
mode (see Fig. 7). The equation for this mode is ob-
tained by the following linear combination of the indi-
vidual arm motions’

A;=%(A1—As+As—Ay), (A7)
where the normalization factor of } is used so that the

Fo=GMmd{[ (R*— 2id cosf)—¥2— ( R2+2ld cosf)~2] sinf+[ (R2— 2id sind)—¥2— ( R*+2ld sinf)—¥?] cosf}.

Fi16. 7. Gravity-gradient sensing mode.

detector energy expressed in terms of the four arm
amplitudes is equivalent to the detector energy ex-
pressed in terms of the four vibrational mode amplitudes
(gravity gradient, torsional, and two translational).?

If we add the equations for the four arm motions
[Egs. (A6)] in this manner, we obtain the equation of
motion for the gravity-gradient sensing mode

mA,+dAg+kA,=4(FY—F/+F/—F/)=F,, (A8)
where
F,=GMmd{[ (1/Rw*) — (1/Ry* ] sind
+[(1/Ra?) — (1/Rs*) J cost}. (A9) -

Because R, is a function of the angle 6, the resultant
force F, has a complex behavior with the angle of
rotation. To calculate the components of the resultant
force as a function of frequency, we will expand the
terms in R;. 7. Letting

Bringing R? out from the denominator and letting A= (ld/R?), we obtain

Fo=(GMmd/ R {[(1—2A cosd)—¥2— (142A cosf)~*2] sind+[ (1—2A sind)—2— (1424 sind) /2] cosh}.

‘ R=P+d2+h2, (A10)

we can write the resultant force F, as
(A11)
(A12)

We now expand each term using the binomial expansion theorem; however, because the expansion parameter A
can be as high as 4 when the generator and detector are separated by 4.5 cm, it is necessary to take the expansion

out to the seventh order.

F,= (GMmd/R?) {[6A cos8+35A3 cos’0+252A8 cos9+ 2428 A7 cos0] sinfd

+[6A sinf+35A2 sin¥+2§2A5 sin®9+ 2425 A7 sin%0] cosh).

(A13)

(The even order terms drop out because of the symmetry.) If we rearrange the above equation and use the trigo-

nometric identities

2 sinf cosf=sin24,
2(cos* sinf-}sin% cosf) = sin24,
16(cos*? sinf-+-sin®9 cosf) =35 sin26-+-sin6d,

32(cos sinf+-sin’0 cosh) = 7 sin28+3 sin64,

we can obtain the expression

Fy= (6GMmid?/ R) { (143547 A 2584207 sin20t-+ (HHEAHS435A9) sin6e],

(A14)

(A15)

7C.C. Bell, J. R. Moriis, J. M. Richardson, and R. L. Forward, “Vibrational Mode Behavior of Rotating Gravitational Gradicnt

Sensors” (to be published).
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F16. 8. Calculated equivalent gravitational-force gradient.

where we brought out a factor of 6A=6Ild/R? from
behind the brackets. This expression shows that the
interaction force between the generator and detector
is complicated at close distances of separation and
depends upon the sizes of the generator and detector,
as well as the separation distance. This expression
also shows that in addition to responding to the gravi-
tational-force gradient or the second-order gradient of
the potential at 2, the detector will also respond to
.the sixth-order gradient of the potential at 6Q. Because
of the symmetry of the generator—detector combination,
the intermediate higher-order gradients are not ob-
servable.

In order to relate the equation for the effective force
on the gravitational-gradient sensing mode of the de-
tector [Eq. (A15)] to the previous work, we define
an equivalent gravitational-force gradient by the re-
lation

T'=F,/2ml, (A16)

where m is the effective mass and 2/ is the effective
length of the gravitational-gradient sensing mode.
The effective gravitational-force gradient [Eq.
(A16) ] was computer calculated for various values of
the separation distance 4, and the results for the ampli-
tudes of the two frequency components are plotted in

Fig. 8. For this curve it was assumed that the detector
had an effective radius of 5 cm, and the generator
consisted of two 1-kg masses on a radius of 4 cm. At
the nominal separation distance of 5 cm, the effective
gravitational-force gradient resulting from the generator
is 1.24X1077 sec™2. This is about 0.04 of the earth’s
gradient. These two relatively small masses have a
relatively large gradient because we are able to bring
the center of mass of the detector very close to the
center of mass of the generator.

At distances greater than 12 cm, the only important
term in Eq. (A16) is the first, and the effective gravi-
tational gradient is given by the formula

I'=3GMd? sin2Qt/ (B+P+P) 2~ (3GMd/K) sin29L.
(A17)

The gradient is falling off as d*/A° rather than as 1/4
because the detector is only sensitive to the dynamic
gradient being generated by the rotating mass-quad-
rupole moment of the generator and is not sensitive to
the static gradient of its monopole moment which does
fall off as 1/A3. _

If we choose the rotation speed Q of the generator
so that the detector senses the gravitational-force gra-
dient fields being generated at twice the rotation speed

B/m=(29)2, (A18)

then the gravitational forces at 2Q are seen to be driving
terms in the equation of motion of the vibrational mode

[Eq. (A8)]:
A+ (d/m) A+ (29)2A,= 2T sin2Qt.  (A19)
The solution to this equation is well known as

.= —2TI[Q/(22)*] cos29, (A20)

where 4, is the amplitude of the vibrational mode and
(@=20m/d is the quality factor of the resonance.

In practice we do not measure the mode amplitude
directly, but instead measure the amplitude of one of
the arms

A1=4%A,= —TI[Q/(22)%] cos29t. (A21)
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