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ABSTRACT

Ve study the dynamics of the true vacuum *“n & cosmo- -
logi cel phase transition  goveimed by a Higgs field., Whren
the mass of the field depends on the temperature tihere is a
feed buack mecheanign for relaxing the cosmologicael constant
neayr zero.

The stendard cosmological model is faced with a
notsriocus, by now, hierarchical problem: the Vacuum energy €y
of the actual Universe is extremely fine. tuned to zerd ; 1if

;o 15 the scale of a spontaneous symmetiry breaking, tie scalar
potenti&l energy is of order FL04< and the P%E%O S /@ is :
less than lo~7° for, say K, 4200 HeV ox lo” for/ﬁhe Plencx
mass.. Put ia other words the actual cosrological constant(c C.)
expressed in Planck units is less than 10~ -122 and the problem

how such & iiny number could appear in & local theory. There
are m&inly two attitudes toward the resolution of this problem:
one of them assumes the C.C. is strictly zero due to some
symmetryl. The di fficulty with thi s &pproach is that there is
no known symmetry, at least at low energy, to realize the
desi derate. The second approach consists to finding & natural

2 X
{o zero®. By the words "a natural

way to bring the C.C., close
way" we meun & mechanism for whi ch the C.C. relaxes near a
van1sb1qg value wholwever its initial value would have been, In
this paper we study the dyne¢ emics of the true vac un in a Dhase
transition together with & tentative pr0D0°al(:‘§Hg‘€2H%dt1Ve
lies-in the framework of the second apnroach.

Let us consider & phase transition governed by the scalar
votential energy density of & Higgs field :
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d The coefficient ¢ for the first order ( «w ) tempera-
. ture corréction of the mass depends on the fact the &) field -
§ is a gauge singlet or an:n—plet; in general, ¢ 1is of order
: The bhcse transition takes pluce for temperature smaller

3 _
' than Yblr—ﬂon/LS when & new minimum forms at 4> =G+ Q (true

vacuun)., The C.C. in thefbhaae is determined in part by

N(© ) = Y5/4)\ ~ and depends naturally on temperature, The
“ idea of a temperature dependent C.C. is not new. However,the
_ possibility of & continuous decaying vacuum with the tempera-
s ~ ture, all the history of the universe, as in Ref.% is severely
1 | restricted in order not to interfere with the success of
nucleosynthesisq . Here we limit ourcelves to tle temp.é—-
8 v rature dependence of (C.C. for phase transitions oniy as pre?
dicted by the field theory at finite temperature * . Our

further assumptions &re: i) the two phases are well descyibed
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% by a flat (k = o) homogeneous spacetime ii) the dynamics of
% the broken ohase is determined by & coamological term(either
% - positive or negative) and a perfect fluid stress energy tensor
4 which includes the kinetic energy of the field aid other
i forms of matter., Let us write the Einstein equatlons for such
:E a case; the relevant ones are :- .-
3 3 a*=(A+TTxga* (2)
! :
g 5 R
§a = ~3(P+N . (3)

where a 1is the Robertson VWalker scale factor, we use units

such. as @= ¢c=h=1 and the T¥6 sign conventions. To
solving (2) and (3) we must suvoly dlso an equation of state
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~where 1s a number between 0 (for dust) and X‘V§ (for radlaf
tion). Any mixtures of this cases can be accurately fltted
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.withﬁavxeivgvb. There is a variation of Y with time but
elough slowly «nd in the following we shall neglect it. In
this situation, insexting (4) and (3) in (2) we obtain:

(&/a> - /\ + E},\\KSJ (Ck-/a )3(2(?!) (5)

vhi ch has analytlc solutlons. For a p031t1ve Cosmologlcal
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constant it is :

) 2 .
A= Op tsh Ly V€T, 35\5@ (6)

iThe gcale factor being normalized so as @ = a at t = 2’%*“TEQ/

/ﬁ@Q}TD\GQ] and N\ =8Tw @, . For late times relation (6) re-
presents a quasiexponential de Sitter expansion.
For & negative cosmologlcal constant eq.(5) 51ves &n 0501lla.

tory solution
—— =
A =agsin Ty VN /2 :\76@ (7)

It cen be ontained by direct solving (5) or by enalytic
continvetion of the solution (6). Note, the solution is viable
forlA{ & I . rinally, for /\— © , the solution is found

by series expansion from (6) or (7) as
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a :C‘o[ Ty Ve, 3 St (8)

This reproduces the usaal cosmologies for rdulatlon
dominated ( Y=V3, a Nt‘h) and for matter do*xunuteng ,avtj)
Universe. 7

wWe ale now in p051t10n to expldln at least quali tative-
ly, the feed buck mechaniam  announced in the title. The

svmmetric phase rossesses an initial C.C. .[\o, whi ch, wé shall
asume, has any arbitrary value, between zero &na\%Kj%). Once
the temperalure drops below Tcr’ & global minimum forms(see

.fig.1l); the assymmetiric vacuum has an effective C.C.[XZ/\;KVK%>
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Its value can be-positive, zero or negative (corresponding to

the curves V?_ r?O)‘VP_ ) depending on the magnitude of the

s
1n1t1a1 4ﬁs ana the time necessuary for the tra031t10n to take



place. For a delayed vhase transition and a sm&lljﬁa(comgared
. ~ . ; N . FERTN EAE S d 4 S 0
with N 0= W go S we expecl the ellfective C.C. to be

nesative and the bubdbles of the new phase 1o behave according-
ly to 7). Tt will eventuolly ewpard to & meximum value(when
\[QF gﬁ?ﬁ% ) but then it recontracts, the tumnerdtgre reises,
and wiin certitude 1t will altadn the Value’jl because as

a 20, T2 . 0On the other hend if the effective C.C. is
positive (e.g. tne T, carve) the new phase exnends guasi-
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eynoqsqtiully, the efiect being & decreuse- of the tempera-

ture., Civen «n eaough long time we expect the temperature to
settie dowin to v velte near TD- corresponding o an effec-
tive AeD. Ii is clear, also that, the most of the time,the
bubble will srend in a state i th 4_\ \<_ Xk\“\(? . The C\’?l nlavs

. . -2

the role of a retroaction: when C.C. is positive, the a'i
tersn wvia (&), diminighes 1tself wnd the C.C.(for nom«l matter
vher &« fnd T are inversely correlated). Conversely for a
noeatave €00, the cﬁﬂ’term increuses and so does the C.C,
(after wome lunge of time whenzj\\<‘gm<?). Till now we

med the evoiuntlieon of tne eifeciive C,L, i¢ e

104
slowly and we can treat 1t as & resl constait like in eg.( 5)
To seo 1T this ennroxination is Justilied we must provice ovne
more eguelion liaking, say, the energy density «nd the tempe-

«

rature
£=TT (9)

with n=4 for rudiation snd n=1 for mutter. as before, we argue
that eny combination matter-radiation can be wccursately
described by eny w&[A 4] 3 however the varistion with

time o7 the indlce v may ve importent, The dynwalcal and

comservation equation (2),(% ) reac now
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The ecquation of conservatien can be reudily integrategd

ror =y n but for definitess we tuze =4, Tt is convenient

¢
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to introcduce the adimensional guantities X = T/‘I‘Cr ,
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C y = c‘*//qu“’ and 'i_[\o/gﬂi(gcs . The equation (11) gives

/ - XC\.—\QML C \:,2\_)—
Of Gy ™ R e (12)

vhile eq.(}1) gives

(6 T Pl @

where ) = ¥ ?cf/?j . Note that Cy is typically, & small
nombers with Cex/y , ™10, & singlet ma T-\x—:—\Yl/\’g’) e\~ Vol :

i f & is resnongible for the breaxing of &U(5), M) and

c;:uﬂﬁﬂ; vith W ~N200,  So Cy is at most 0(10“2). If we neg-
lect C‘ , eq (L1%) reduces to ec() via (9). So our previous
approximé&tion, treating N as a el function, is justified.
we dig not succeed to solve the system (10,11) for emy n,(come
numeri cel simulaticons @re in progress) 5 let spart we do not know
how vary n with the temperature. However for pure radiation
there is «n exact golation. The ternerature is given im_pli‘—

citely by :

; . : Y ; /) - ) 3 ’“2' -~ - - o
ZQ\Q’thguﬁ‘; - \/(s-—CA +2( % Q,-(; ) ,(%{QuCV\;\  © ¢ -Gr 1 (14)

T«C’.\.
where ;
= \ XZ'CQ + -Gy .
=T Qs e Yor €2 C)/‘\‘C\
V-G X*Vyog- Qv

I=
\ ’ Ay re ¥ - N
- o= 1RGN - — yos. O < C,|
\. r/-:'.(:;/CT o B fz\/Crfﬁ-\”C(
d Lﬂuﬁﬁtv\ .
The constant’is fixed demanding that at t = 0, x = 1,

The interesting feature is thal, in the case v (,,
thiere 18 @ minimum temperature attainable., This is due to
the theoren of positivi ty of energy: the system can not evolve
into & state with 3UKP-\N)C(Q Although the existence of a minimum
temperature is general, its value dépénds on n. A smaller n
gives a slower decreasing of the temperature wi t‘nﬂ}%'ime and the
scale factor (e.g, for n = 2, QNT_\—,_.‘QKP%\_?Z

Finally we urgue that our restriction, No é}lé' W<V /N

is not so drastic if, in the history of the Universe, there
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was & sequence of phase transitions patterned alter (1), then
2

& ,
_/\O = Vo e KT/) Say j\ }L (Plan sz\
we think the m hdnlsn uluCUSu@d is quite simple and has
the adventage it does not need the introduction of any extra
nhysics. Ve publish it with the hope that somebody will fingd

& more precise way to formulate it.
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