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ABSTRACT

Superstrings have been proposed as a quantum-theoretical framework for unifying
all the fundamental forces, including gravity. We consider the question of whether there
might be more general supersymmetric possibilities, based on higher extended objects
such as membranes, jellies, etc. We argue that all the possible extended objects in all
possible spacetime dimensions are quantum-mechanically inconsistent except for the ten-
dimensional superstring and the eleven-dimensional supermembrane. These are also the
only two such theories that contain massless gravitons, and thus that can describe gravity
at low energies. It is remarkable that the range of possibilities can be narrowed down to
this extent. Whether these can be further narrowed down to just one consistent theory
remains open to further research.

* Research supported in part by the U.S. Department of Energy under grant No. DE-
FG03-84ER40168.



In recent years we haved learned that superstring theory might provide a frame-
work for the quantum-mechanical unification of all forces, including gravity. The probable
finiteness of the theory is a consequence of the ‘smearing out’ of the usual short-distance
behaviour of quantum gravity, while at the same time infra-red problems are avoided be-
cause of supersymmetry. These observations immediately raise the question of whether
other supersymmetric extended objects, such as membranes, might share similar properties
to the string. It is important to study this question if one seriously believes that super-
strings may provide the fundamental unified theory. For example, showing that nothing
other than superstrings can work would be very significant from the fundamental point of
view. On the other hand, if some higher-dimensional extended object could solve the main
problems of quantum gravity and finiteness, we would then need to find justifications, on
the basis of its predictions, for favoring one extended object over the others. The discussion
of such issues is clearly beneficial from the point of view of fundamental physics.

Following the discovery of the supermembrane [1,2], generalizations to higher ex-
tended objects have been found and classified. The variables in these theories comprise
d-dimensional spacetime bosonic coordinates X*(r,d) and N spacetime spinors ¥(r,d),
where ¢ denotes the p spatial coordinates of the extended object or ‘p-brane’ and 7 is a
time coordinate that parametrizes the evolution of the p-brane. Thus p =1, 2, 3--- corre-
spond to strings, membranes, jellies, etc. Classically, a bosonic p-brane can be formulated
in any spacetime dimension d. However, it is remarkable that their supersymmetric exten-
sions in the Green-Schwarz formulation that exhibits manifest spacetime supersymmetry
is severely limited, and only the following values of the spacetime dimension d, the brane

dimension p and number of supersymmetries N are allowed at the classical level:



1) (dap)N :(10’1)2: (11’2)1
2) (d,p)v =(6,1)s, (7,2)2, (8,3)1, (9,4)s, (10, 5)1
3) (d,p)v =(4,1)2, (5,2)2, (6,3)2

4) (d,p)v =(3,1)2, (4,2}
Table 1

These restrictions follow from the requirement that the action exhibit a local fermionic
‘Siegel-symmetry’ which is possible only if certain spacetime I'-matrix identities are sat-
isfied [3]. However, the same restrictions can also be derived in a more physical way by
demanding an equal number of bosonic and fermionic physical degrees of freedom (after
gauge fixing). One of the consequences of this equality is the appearance of a zero-mass
vacuum state through the cancellation of the vacuum energy of the bosons against that
of the fermions when the vacuum is in a spacetime supersymmetric configuration. This is
a prerequisite if massless states are to appear in these theories, which is necessary if the
theory is to have a low-energy limit that connects with physical observations. We shall
return to the question of whether these theories can describe gravity at the end of this
paper.

The number of bosonic degrees of freedom is given by (d — p — 1), where the p + 1
reparametrizations have been used to eliminate p + 1 bosonic functions. The N spinors ¢
are taken to be Majorana unless d = (5,6,7) mod 8, in which case N must be even and
the spinors satisfy pseudo-Majorana conditions. Each spinor has D(d,n) = 2!4/2] /n real
components, where [d/2] is the integer part of d/2 and n = 1 unless d = (2,6) mod 8, in
which case we may simultaneously enforce a Weyl condition and hence n = 2. In these

cases N may be written as N_ + N, , where N_ and N, are the numbers of left- and right-
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handed spinors. The number of fermionic degrees of freedom is ND(d,n)/4, where one
factor of 1/2 arises from gauge fixing and the other 1/2 from the fact that the Majorana
spinor 1 satisfies a first-order equation and hence is its own canonical momentum. Thus
to achieve equal numbers of bosonic and fermionic degrees of freedom, we must satisfy
d—p—1= ND(d,n)/4 with only positive integers d, p, N . The only solutions turn out
to be those appearing in Table 1. The numbers of degrees of freedom are thus 8, 4, 2 and
1 for the four series 1), 2), 3) and 4) respectively. It is interesting to note that these are
the same as the dimensions of the division algebras for octonions, quaternions, complex
numbers and real numbers, although the possible physical implications of this observation
have not been understood.

Further restrictions on d and p can be expected from quantum considerations, as is
familiar from string theory. In the Green-Schwarz formalism the only known approach to
quantization is in the light-cone gauge. This gauge breaks Lorentz covariance, since the
two spacetime coordinates X* = —J=(X° + X“~') are singled out and eliminated through
gauge choices and the solution of constraints. The full Lorentz group is, of course, still
a true symmetry of the physical variables in the classical theory, albeit a non-linearly
realized one. However, after quantization this may no longer be true; in other words the
quantum theory might suffer from anomalies. These anomalies, which would be signalled
in the light-cone approach as a failure of the closure of the Lorentz algebra, would lead in
a covariant approach to the appearance of unphysical ghosts that do not decouple after
quantization. This would be disastrous for the quantum theory.

Remarkably, it is possible to rule out most of the super p-brane theories listed in
Table 1 even without performing a complete analysis to check the closure of the Lorentz
algebra. We do this by noting that a necessary condition that must be satisfied by a
quantum theory in which there are no Lorentz anomalies is that the degeneracies of the

massless and massives states in the theory must be such as to be compatible with their
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being assembled into full representations of the appropriate little group. In m-dimensional
Minkowski space (possibly with d—m additional compactified dimensions) the little groups
for massless and massive states are SO(m — 2) and SO(m — 1) respectively.

It is a standard calculation for the Green-Schwarz formulation of the ten-dimensional
Type IIA superstring in light-cone gauge to show that the vacuum state of the theory
comprises the supersymmetric set of SO(8) massless multiplets (148, 4+28+35, 456, )5 os0n
plus (8; +8_ + 56, + 56_)rermion, and furthermore that the excitations fall into SO(8)
representations that can be assembled into full representations of the SO(9) little group
for massive states. That this can be done, even though the manifest symmetry in the light-
cone gauge is only SO(8), is a reflection of the fact that the SO(9,1) Lorentz generators
do indeed form a closed algebra in the quantized theory.

Less well known is that the analogue of the consistency check that we have just
described (when supplemented with supersymmetry) is sufficient to establish that the su-
perstring is inconsistent at the quantum level in its other classically-allowed dimensions,
namely 6, 4 and 3. In other words one finds that the degeneracies of the massive states
in these cases are not such that they can be assembled into full supersymmetric repre-
sentations of the appropriate little groups. This provides a quick way to rule out these
dimensions for superstrings without getting involved in the full complexities of checking
the closure of the Lorentz generators [4]. This approach is very useful when we turn to the
consideration of the higher-dimensional super p-branes, because now we are dealing with
theories where no one has yet been able to perform the full computation of the algebra of
the Lorentz generators.

To study the quantum consistency of the super p-brane theories, we exploit the fact
that even though the topological possibilities for closed p-branes are much more diverse
than for closed strings, it is sufficient to exhibit a failure of the Lorentz algebra for just one

topology in order to rule out a particular p-brane. In each case, we choose to consider the
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case where the p-brane has the topology of a p-torus, residing in a spacetime that is the
product of (d — p + 1)-dimensional Minkowski space and a (p — 1)-torus [5,6], so that p—1
of the p-brane dimensions are wrapped around compactified spacetime dimensions. Thus
for the sequences 1), 2), 3) and 4) in Table 1, closure of the SO(d — p,1) Lorentz algebra
would mean that the massive states should assemble into representations of the same little
groups that we discussed above for the string member of each sequence. In fact the group
theory analysis for the states of any member of a given sequence contains that for its string
member as a subset, so the entire sequence stands or falls with the string, as far as this
consistency check is concerned. Since the strings in the sequences 2), 3) and 4) all fail,
this means that all the super p-branes in Table 1 must fail except for the ten-dimensional
superstring and the eleven-dimensional supermembrane [4,6].

Of course, showing that a theory survives this test of consistency is no substitute
for doing the full analysis of verifying that the Lorentz algebra closes. However, the
remarkable point is that these considerations alone are enough to rule out all except the ten-
dimensional superstring and the eleven-dimensional supermembrane as possible quantum-
consistent theories. So far, the eleven-dimensional supermembrane has survived all the
consistency checks that we have been able to perform; further work is needed in order to
establish whether it really is quantum consistent. Should it turn out that it is, the fact that
the Type IIA superstring at least can be obtained from the supermembrane by a process
of ‘double dimensional reduction’ 7] raises the intriguing possibility that the superstring
may be but the tip of vastly more complex supermembrane iceberg.

There is another reason why the two members of éequence 1) seem to be preferred.
When one examines the structure of the massless vacuum state itself, one finds that it is
supersymmetric, with quantum numbers determined by the fermionic zero modes. Only
for sequence 1) is the vacuum a supergravity multiplet; for the other sequences the mul-

tiplet describes either super Yang-Mills or super matter. In particular, for the d = 11
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supermembrane the massless states form the SO(9) multiplets (444 84)gos0n +128Fcrmion>
which correspond to the fields of d = 11 supergravity [8]. For the d = 10 superstring the
SO(8) multiplets described earlier correspond to d = 10 Type IIA supergravity. Thus the
sequence 1) theories are the only ones that include a graviton, and so it seems that gravity
and quantum consistency go hand in hand. This is a fortunate circumstance, since our
goal is to find a unified quantum theory incorporating gravity. It is indeed remarkable
that the number of possible theories is so small, and that apparently not only does gravity

need extended objects, but extended objects need gravity.
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