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ABSTRACT

Stimulated by ideas occuring in Supergravity we develop
a gauge theory of gravity based on aqspin-3/2 Majorana field.
Our theory has no metric or vierbelin as an elementary field.
Classically the theory is 1n complete agreement wilth
Einstein's metric formulation, but quantum mechanically it
differs from ordinary formulations, including supergravity,

on the fundamental nature of gravitation. In our approach

gravitation arises from a collective effect due to spin-3/2

gravitinos.
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Supergravit§”is a theory of gravitation and of a Majorana
spin-3/2 field, invariant under a local supersymmetry transformation.
Inspired by this idea we envisaged the possibility of constructing
a theory of gravitation in which the metric tensor is obtained as a
composite field in terms of the elementary spin-3/2 field aloné%)

In this essay we propose a generally covariant and locally
Lorentz invariant.theory of aiMoJorana spin=<3/2 field 16:L. It
differs from supergravity by the absence of an elementary vierbein
field h}) . Nevertheless we show that, through an appropriate
ansatz, a classical equation can be obtained for a "collective"
metric tensor, which exactly coincides wlth Einstein's equation in
general relativity; Thus we interpret Einstein's theory of gravity
as a special classical solution of our theory, similar in spirit
to e. g. soliton or monopole solutions of classical field equations.
This classical solution provides a curved background on which the

M

Ferml field is quantized by taking:

‘\ﬁ: = (.'\P;:’ )dassica-e + <'\Pf:‘ )1mw-tww (1)

This approach 1is analogous to quantization 1n the presence of a

background field, often used in general.relativity.

In the language of the geometry of fibre bundles we consider a
principal bundle with a four dimensional space-time manifold Mu as a base
and the Lorentz group G= SL(2C) as the structure group. A connection is

introduced in terms of an equivariant horizontal form A with values in



-2

the Lie algebra of G, whose components (in a coordinate,basis)\
are the gauge potentilals 1),%13 . We also consider an assoclated
bundie with the fibre 1{' being a real spinor-valued horizontal
one-form belonging to the (1/2, 0) @ (0, 1/2) representation of

SL (2C ). The induced connection is given by A = Ai‘j where

Gy 4

0,, = 1/2(1{11{J - b’j (i) are real Dirac matrices (MajJorana represen-

1]

tation), generators of Lorentz transformations. We define the

covariant derivatives Du in a coordinate basis {3/,} by :

o )
Dp = O + A O (2)

The curvature R 1s a horizontal two-form with values in the Lie

algebra of G whose components in a coordinate basis are given by:

M

[‘DI“ ) -D"] = — R;LJV 0-"‘)' _ (3)

or
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We take the action to be given by:

S = 2 YOV A0V )., ()

2
X

where X is a constant, the pseudoscalar Dirac matrix (XS)“ﬁ is

real and antisymmetric, and we have used-the notation:

(DY)* = (I)L“P)ocﬁ_z(_/‘/\ CH.V * The metric that ralses and lowers
spinor indices is the charge conjugation matrix C =6} in the
Majorana representation, Notice that the action (5) is non-
vanishing only if the components of‘yVare non-commuting.

It is instructive at this point to compare this action with
that for general relativity in the vierbein”formalism. Introducing
a vector-valued horizontal one-form h (the vierbein) transforming
as the (1/2, 1/2) representation of SL (2C) one can write Einstein's

~

action 1n the form:

i pik o
Ssc“stacn = —I]{ S ha R™ A h €jke t6)

On the other hand upon integration by parts (5) becomes:

S =

S I\{)«A Rik/\ "Pp o ik €k (1)
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in close analogy with (6). Carrying the analogy further it will
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be natural to introduce a metric tensor as a composite field defined

(up to a constant factor) by:
« é
Gp = «Pr* Cog A (8)

We also notice that the two-form (D’Yfg RK, which appears in the
action (5), can be identified with the spinor component of the

curvature tensor R = {Rij

s R® } for a bundle space over My with
structural supergroup OSp(l,2c). This suggests the possible exls-
tancé of a supersymmetry invarilance. Indeed we find that the

)

action (5) 1is invariant under the following transformation:

(ALY, — BAY = —(Rpw € )

(10)

This last equation may be only formal, since 1t 1s not clear that
it can be solved for gAﬂ . Nevertheless a conserved current
assoclated with the corresponding global symmetry can be. derived via

Noether’s theorem:

.J-,r = 8P’v>‘w (XS A)"Dx APG’ >°‘ ' (11)
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The equatibons of motion following from the action principle [S

are:

’\l} h,S O'ij A Dﬂ} = O (12)

‘R/\'\!) = O (13)

Using Bianchl's identity it 1s easy to verify that the last
equation yilelds BrJf = 0.

We shall now look for a classical solution to these equations

by making the ansatz that
: ’y & P
= a,;‘l /\'yr\ = hf" @,,) p BP (14)

where a};j and h/i‘ are classical functions and D is a constant
spinor. It will be shown later that 6 is related to the supersym~
metry charge assoclated with the conserved spinor current (11).
Strictly speaking, since ’Y 1s a non-commuting spinor, there does
not exist a completely classical solution. What i1s meant by the

ansatz (14) is that 1t describes states |B) and [Ba)> = 6« | B>



such that:

<8l Al 1By = ay (5)
Bl b (B = hp BT

The fields quantized about the state lB) wlll then be given by
I - h; i / .
= = 16

Substituting (14) in the equations of motion (12,13) we obtain

i

the following equations for hrL and a;i:

e (Dyhe)' = © o (17)

ey L '
g\*ux“' RV'V V\), [f.;‘)kl \65\6 + 'Ylakx.;-—"l;k“d—} =0 (18)

where

@ihe) = nhi 4 A WG
| (19)



The second term in eq. ({8) vanishes as a result of applying Dy

to eq. (17). Then (18) reduces to:

O I A

Egs. (|7) and (20 are identical to Einstein's equations in the
absence of sources, in the vierbein formalism. Eq. (17) is the

condition of zero torsion and completely determines azf in terms

of hi . After standard manipulations eq. (20) can te brought to
the more familiar form RFV = 0 where RF? = Rrxijhghg i1s the Riccl

tensor. The metric tensor defined by (8) now becomes

1.1 B
Epv = hFh"&Jg co= (gPV)classical o ce.

- There remains to understand the meaning of 6 .
We define the total charge S, assoclated with the fermioniec conserved

current by

Su = § Tl ao

3 (21)

v

where 2 1s a spacelike surface with respect to the classical
metric. Uslng the equations of motion, J:‘ can be written as a

) VAG
total divergence JI = gt 15 9,(Ay ¥y ). The charge can then be

written as a surface integral at infinity:



) yAo
Sy = Aim Ssam- e, Ay (KSO-LJ e € (22)
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where n,, = (Oﬁg) is a unit vector normal to the sphere S. If one
assumes that all the long range effects are already contained in

the classical solution, the fields A}L and «?# will fall off at

r e faster than l/r2 and willl not contribute to the charge. We now
assume that the field ﬂkinteracts with other fields which act as
sources and for simplicity consider solutions of Einsteint's equation
outside the sources, which are static apd'asymptotically flat. Then
the hi's must have asymptotically the Séharzschild form. Up to a

®
gauge transformation we have for large r, h?*azg%_(l—KM/r),

1
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eq. (16) and replacing the ansatz (14) in (222 one obtains:

hy = (%’}- KM X'*Xi/r'3) for t& # 0 and hiz 0. Calculating air‘j‘ from

Du = 8T KM 6y : (23)

where X 1s the gravitational constapt and M the mass of the ‘background
state. Thus, BQ 1s related to the supersymmetry charge.

In order to determine the independent canonical varilables 1in the
theory we investigate small oscillations of the fields about a
classical solution in a region of space-time far-removed from the
sources., We then linearize the equations with reépect to the

primed variables and use the flat background metric h%~= 5? .



Since we have the local gauge invariance (9, 10) we can fix the
gauge by‘hil}&ﬂv' = 0 . Then the equations of motion reduce to
a"“'\\?é;—_ (o] and a'\l’t:'= 0. The two conditions ¥-¥/= o, 3‘?; 0
remove the two spin-1/2 components of the spinor field,leaving a
massless spin-3/2 Rarita-Schwinger field, the gravitino,as the only
independent dynamical degree of freedﬁm. Hence although classically
we agree with ordinary gravity, there does not appear to be a.
graviton associated with a spiln-2 elementary quantum oscillator
in this theory. Gravitation arises as a classical solution corres-
ponding to a collective effect of the fundamental spin-3/2 gravi-
tinos.

The arguments presented here should become more preclse 1n
a fully quantized version of this theory, which must also include

the other Interactlons and symmetries existing 1in Nature.
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(3) The connection is a vertical form. The horizontal form A is
actually a connection difference that 1s the difference
between the connection and a trivial connection corresponding
to pure gauge (zero curvature).

(4) The algebra corresponding to this transformation is based on
0Sp(1,2¢c) which is different from the conventional super-
symmetry algebra. Its realization on asymptotic states may
not be linear.‘ This would be consistent with the absence of

a spin-2 particle.



