_}‘

2 P )

UNIVERSITY OF CALIFORNIA, BERKELEY ‘
) ‘ '

BERKELEY ¢ DAVIS * IRVINE ¢ LOS ANGELES ¢ RIVERSIDE * SAN DIEGO * SAN%I\ANCISCO SANTA BARBARA ° SANTA CRUZ

DEPARTMENT OF PHYSICS BERKELEY, CALIFORNIA 94720

March 11, 1981

Dear Sir,

Please find enclosed three copies of my entry for this year's
Gravity Prize. It is entitled, "General Relativistic Chaos and
Non-~Linear Dynamics".

Yours sincerely,

JMW

John D. Barrow

JDB:cm



Biographical sketch:

John D. Barrow was born in Londoﬁ in 1952, read mathematics
at the University of Durham (1971-4) Sefore becoming a research
student of D;W. Sciam.a at Oxford University. He received his
D. Phil. in 1977, was Lindemann Travelling Fellow in 1977/8 and
a Research Lecturer at Christ Church éﬁd the Department of Astro-
physics, Oxford from 1977-80. He is currently a Miller Fellow at
UC Berkeley. His interests include gravitation, non-linear

dynamics, astrophysics, reading and track athletics.



General Relajivistic Chaos

nd

Non-Linegr Dynamics

John D.!Barrow
Departmentlof Physics
University 9qf California,
Berkeley, CA|94720, U.S.A.

Gravity ﬂssay, 1981




Summar
We describe how new ideas in dynamical systems theory find application in
the description of general relativistjc systems. The concept of dynamical
entropy 1s explained and the associatdd invariant evaluated for the Mixmaster
cosmological model. The description ‘f cosmological models as measure
preserving dynamical systems lemds to a number of exciting interconnections
with new results in non—linear dynamics. This may provide a‘new avenue of

approach to ascertaining the nature of| the general solution to Einstein's

equations.




Chaos 1s ubliquitous. During the last few years applied mathematicians
and physicists from a variety of backgrounds have been intensively ivestigat-—
ing the onset of chaotic behaviour in a wide spectrum of simple deterministic
dynamical systems(l).

Until very recently if you had stopped a physicist in the street and
asked him if deterministic systems could be chaotic he would have answered
that 'random' behavior could only appear in the output of a dynamical system
if its initial data were stochastic in nature or if some random forcing were
coupled to it or a very large number of degrees of freedom excited. However,
a series of studies have revealed that although any of these contingencies are
sufficient pre—requisites for the appearance of random behaviour, none are in
fact necessary. Very simple dynamical systems, notably iterated maps of the
unit interval, with regular initial data, no stochastic forcing and very few
degrees of freedom, exhibit behaviour which is for all practical purposes

completely unpredictable(l»z).

Before describing the relevance of these ideas to general relativity we
should explain the last statement; in particular, what is meant by 'chaotic'

or 'random' behaviour in a deterministic system?

Consider a simple difference equation which rotates points around the

circumference of a circle,(fig 1)

Oh+1 = 26, (mod 2m) ¢9)

P

fig. 1



This discrete mapping 1s completely deterministic. If we know the
initial position of P at 6, precisely we will also know its subsequent posi-
tion precisely after any specified number of iterations. However, suppose we
approach (1) from a more realistic or "experimental® point of view. If (1)
were a model of a real physical system our initial specification of 0, will
always be uncertain by some small amount §6,. After the map has been iterated
n times this small initial uncertainty will expand exponentially to £fill a

portion of the phase space (circumference) of angular extent
60, = 2066, (2)

For sufficiently large n the finite initial uncertailnty, however small, will
eventually expand under the action of the mapping to fill the entire phase
space. Although the mapping 1s completely deterministic any finite
uncertainty in the initial data will render the output completely

unpredictable after a sufficient number of iterations. In this essay we shall

show that the Einstein equations are chaotic in this sense. Nearby
trajectories in their solution space diverge from each other exponentially
fast as they evolve with time and there is a breakdown of determinism quite
distinct from that associlated with either quantum effects or Cauchy horizons.

To make this idea clearer we need to develop some further ideas:

Difference equations are easier to deal with than differential equations.
How can we associate a difference equation with the Einstein equations?

If we take a homogeneous general relativistic cosmology(3) the Einstein

equations will describe 1its evolution via a set of m ordinary differential

equations

x = F(x) x = (x1,.00.xg) | (3)



The solution of (3) corresponds to a trajectory (or flow) in some m dim-
mensional phase space. We can place an (m-1) dimensional cross-section, I,
through this phase space so that I is Intersected infinitely often by the
flow. The sequence of intersections that the‘flow makes with £ gives a
difference equation describing an induced mapping of I into 1tself(1), This
(m~1) dimensional difference equation is called the Poincare return map of the
dynamical system (3). Clearly if (3) exhibits chaotic behaviour it will be
mirrored in the behaviour of the associated Poincare map, whereas 1f its
solution is periodic the flow in phase space is a closed orbit and the
Poincare map would be simply a fixed point.

Our simple example, (1), possesses sensitive dependence on initial
conditions as can be seen from its solution (2). To make this idea precise
and more general we must also take into account the relative liklihood that a
trajectory pass through one point of the phase space, or intersect one point
of I, rather than another. To do thls we require a smooth invariant measure
for the flow or, in practice, for the return mapping. If the dynamical system
given by the Einstein equations has two degrees of freedom, as is the case for
the Mixmaster Universe we shall discuss below, then the Poincare map will be a

one dimensional difference equation,
Xn+1 = T(xp) (4)

If two solution trajectories are initiélly separated by A, = 8x, then their

subsequent separation is represented by

[ag] = |25l f Efﬁ 8(xo—x) dx (5)
dx

Suppose that the trajectory position at time t is given by x{ and is linked to

the initial state by an operatorlZ&% so



x =Lt x (6)
where(izais defined by its action on any function ¥(x)

L) = (T)) | ()
We define the average rate of divergence of neighbouring trajectories as

h = <log|At|/|A0|> Xo (8)
t

where <.....”> is the expectation over the initial ensemble of possibilities
(measure) for x,; that is, "on the average” near-by trajectories in phase
space diverge like eht,

If we set

-1 dxt
Ke(x) =t log ,_?ﬁ; (9

then it is easy to show from (4)-(9) that
(t+DKp41 (x) = tKe (x)+1log|T' (x) | (10)
Now 1f we average this over the invariant measure, u#, for T then

h = <log|T'"(x)I> = flog|T'(x)|u(x)dx (11)

The quantity h(u,T) so constructed is the metric (or Kolmogorov) entropz‘a) of
the measure preserving map T. Formalzchaos exists in a system when h ¥ O,

Such systems, although deterministic, are not predictive because of their
sensitivity to initial data. Information regarding the position of the
solution trajectory is lost at each iterative step. If 7, (y,x) is the joint
probability that TN(x,) = x and 071 (x,) =y then the information loss

under T iteration is given by the Shannon formula(5) as



I(x) = -2 m(y,x) logy m(y,x) (12)
yeT~1(x)

Taking the expectation of this information loss over the

invariant measure u(x) preserved by T we just obtain the metric entropy

h(u,T); that 1is

h(u,T) = [ I(x)u(x)dx | (13)
because
m(y,x) = [T'(x)|~1 n(y) (14)
Hix

Once it is established that a system possesses a non—zero entropy then
many other powerful properties follow (6); isomorphism can be established
between systems of equal entropy and the relative degree of chaos in different
systems compared(7).

The most dynamically general behaviour exhibited by gravitating systems
is predictéd to arise through intrinsically general relativistic aspects of
space~time. Some of these are displayed by the spatially homogeneous

Mixmaster Universe of Bianchi type IX. The essential field equations for this

cosmological model are given by (8)
(1In a2)" = (b2 - c2)2 -3 , et cycl. (15)

where ''' = abcdy and t 1is proper time. The expansion scale factors in
orthogonal directions are a(t), b(t) and c(t).

It is possible to view the Mixmaster system (15) as a chaotic flow in a
two dimensional phase space that possesses a one—dimensional Poincare return

mapping. It is well-known that the Mixmaster evolution passes through an



infinite sequence of states resembling the Kasner space—time (given by (15)
with right hand side zero) as the singularity is approached for t +.0. This
recurrence enables the Mixmaster return mapping to be constructed on the unit

interval and is given by the following mapping of [0,1] into itself,

X+l = T(xp) = %71 = [x,71] (16)

where [x] denotes the integer part of x. This mapping is everywhere unstable,

(IT'(x)I>1), possesses an infinite number of discontinuities and is

displayed below in figure 2.
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figure 2

Remarkably, T possesses an invariant measure that is smooth. That is,

there exists a function uy such that’

Ho(8) d6 = I uy(xy)dxy 17)
k=1

where



¥ = (8 + k)71 (18)

The normalized measure i1s perfectly smooth and absolutely continuous with

respect to Lebesgue measure (i.e. has the same sets of zero measure). It is

Just

uo(6) = 1 (19)
(1+8)In2
Since inf |T'(x)| > 1 and T is piecewise continuous T is also ergodic and it
is straightforward to show it is isomorphic to a Bernoulli shift and therefore
also strongly mixing(ll).
The existence of M, allows the Mixmaster Universe to be viewed as a

measureable dynamical system. Its metric entropy can be calculated from (11)

and (16) as

—

h(be,T) = [ 1n|T'(x)]| dx = 72 = 3,4237... (20)
0 (I+=)1InZ B(In2)Z

On the average Mixmaster Universes evolving from neighbouring Cauchy data
diverge ~ exp (3.4237t). A 'chaotic cosmology' can be rigorously defined as a
solution to Einstein's equation whose dynamics possess a non—zero metric
entropy.

Another way of viewing this dynamical invariant is as a measure of the
rate of generation of distinct trajectories in a system over an infinite time
with arbitrarily fine discrimination between trajectories. This is analogous
to thermal entropy which is a measure of the number of configurations
admitted by a system as the number of its degrees of freedom becomes infinite.

These results create an Inter—face between general relativity and
dynamical systems theory that appears to be potentially very fruitfﬁl. It 1is
possible to classify homogeneous cosmological models according to the entropy

of thelr return maps. What emerges is that, amongst vacuum models, only



Bianchi types VIII and IX have non—zero entropies and this 1s related to the
presence of true gravitational degrees of freedom(9), (As an aside we point
out that types VIII and IX can be shown to be isomorphic to geodesic flows on
negatively curved spaces that exhibit trajectory divergence and chaos(10),
Other homogeneous Universes, like the Kasner Universe, with purely kinematic
degrees of freedom describe geodesic flows on flat spaces which do not exhibit
trajectory divergence.)

There has been considerable speculation(ll) regarding the possible exis—
tence of a 'gravitational entropy' associated with the gravitational field of
an expanding Universe. It would monitor any deviation from exact isotropy and
homogeneity and generalize the Bekenstein—Hawking(lz) entropy to non-
stationary space—times. We have shown that dynamical entropies can be calcu-
lated for cosmological space-times and they do indeed give a measure of the
irregularity in the expansion dynamics in a straightforward and invariant
manner. Penrose's(11) scenarto might correspond to the evolution of a closed
Universe from an almost Friedmannian initial state to a second singularity of
Mixmaster character. Initially the Weyl curvature would be small and metric
entropy zero; finally the Weyl curvature would become large and h ¥ O, Since
the gravitational wave and curvature anisotropy create the chaotic Mixmaster
dynamics they are also simply related to the Mixmaster metric entropy.

One last intriguing possibility 1is the hint of a new approach to analys-
ing the general solution of the Einstéin equations near a space—~time singular-
ity. A large class of non—linear difference equations have been shown to
possess remarkable universal properties(1s13), independent of their precise
form. If it could be established that general solutions to the Einstein equa-
tions possess Poincare maps with some universal characteristics, then impor-
tant deductions could be made about the nature of the general solution without

knowing it in closed form. In effect one is viewing the general solution to
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the Einstein equations as a description of gravitational turbulence and
anticipating that this turbulence develops, like hydrodynamic turbulence, by a
process of period doubling(l3) (note this is not the case for (16)). Two
simple examples should give the idea: suppose one examined an inhomogeneous
space—time close (in some sense) to the Mixmaster model. One imagines that
the return mapping for this dynamics might also be "close™ to that for the

Mixmaster universe. Suppose for illustrative purposes, it differed by some

small constant € so
Xp+1 = T(xp) = x~ 1 - [xpl + el , e>0 (21)

Then a smooth measure Hg still exists for T and the metric entropy is

calculated to be

h(ug,T) = w2 (12 ) ,0<e<3-/5 (22)
6(In2)Z  1In(2-¢) 2

As € increases the entropy does also, although in this example only because it
becomes more probable that trajectories get close to highly unstable points
near x =~ 0. This example is not intended to be very realistic although it is
possible to relate € to the 'error' introduced by viewing cycles of Mixmaster
evolution as undergoing periods of small oscillatims from one exact Kasner

model to another(7).

Since the non—zero metric entropy of Mixmaster arises entirely from the
cycle to cycle evolution (and not the small oscillations within a cycle where
T' = 1) the most interesting perturbations, or generalizations of the Mix-—

master Universe, would alter the functional form of the Poincare map, say to
T(x) = F(x) - [F(x)] (23)

or some higher dimensional analogue, where F is a CT function (r » 2).
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It 1s known(14) that a cT~! invariant measure always exists for(23) and so the
metric entropy can always be evaluated. It remains to be seen whether these
exciting possibilities can be realized.

We have shown how new ideas in non-linear dynamics provide a natural
description of the most general behaviour so far detected in the Einstein
equations. This enables new invariants to be calculated for complicated
space-times and allows the concepts of 'chaotic cosmology' and 'gravitational
entropy' to be made rigorous. Finally, we should add, it creates a new field
of enquiry for dynamicists. A field that should prove exceptionally fertile,
for the unique self-interacting non—linearity of general relativistic systems

hints at the presence of chaotic behaviour of unsuspected subtlety.
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