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Closed string models have recently been constructed in lower than their critical
space-time dimensions D < D,,. An ideal gas of closed strings with D > 4 under-
goes a phase transition at a universal point (Hagedorn temperature). We argue that
non-trivial configurations on the string world-sheet (vortices) drive the system into
a high temperature phase where the vacuum is dominated by vortex condensates.
Flat space-time is identified with the dipole low-temperature phase of vortex anti-
vortex pairs. This is a “Kosterlitz-Thouless” transition on the string world-sheet.

It is suggestive of a “stringy” realization of the inflationary universe paradigm.
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String theories provide a framework for a consistent quantum theory unifying
all known particle interactions including gravity.! The last two years have witnessed
an explosion of closed string theories formulated in arbitrary space-time dimensions
D < D.(D., = 26 bosonic string, D., = 10 type II and heterotic strings). More
specifically four dimensional consistent string models were constructed either by
compactification or by the utilization of different versions of the underlying two

dimensional (super) conformal field theory of the string world-sheet.?

By the first method (torus or orbifold construction), both left and right mov-
ing degrees of freedom on the string world-sheet are compactified. In this way
the original uniqueness of the gauge groups Eg x Eg and S0(32) is lost. There
now exist numerous string models with simply or non-simply laced groups of rank
r <22 (S0(Z,),SU(r +1),E,). Fermionic constructions, on the other hand, utilize
the boson-fermion equivalence in the two-dimensional world-sheet. Space-time di-
mensionality is reduced by the introduction of free world-sheet fermions instead of
bosons consistently with (super) reparametrization, (super) conformal and modu-
lar invariance (“fermionization” of the bosonic space-time coordinates). In this way
one may dispense completely with the idea of extra space-time dimensions as well

as of their compactification interpretation.

All string models correspond to perturbatively stable vacua of a second quan-
tized string theory and they should be treated on an equal footing. The plethora of
closed string models raise important new questions. Are we dealing with different
string theories or with distinct ground states of the same string theory? In the case
of an enormous “vacuum degeneracy” what is the physical mechanism that picks

the ground state we live in?

It has recently been realized that the thermodynamics of an ideal string gas
at high densities and temperatures can effectively classify closed string models in
terms of their space-time dimensions D.3%® For one thing such a system exhibits
a critical behavior at the characteristic temperature T (Hagedorn temperature).

This critical point can be found by a direct computation of the one loop string
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free energy® or through an evaluation of the asymptotic density of string states.®®

Remarkably it was discovered that modular invariance constrains the Hagedorn
temperature to be universal. It only depends on the (super) reparametrization
properties of the world-sheet and the value of the string mass scale o (the Regge
slope). In this essay, rather than go over the detailed technical arguments,*° we

will discuss further aspects of this remarkable property of closed strings.

More specifically the universal Hagedorn temperature suggests a classification of
all closed string models on the basis of the number of world-sheet supersymmetries

as follows:4®

i) Type II strings with left and right superconformal invariance

1
TH = . ].
2v27Vo! (1)
i) Heterotic strings with left world-sheet supersymmetry, left superconformal

invariance and right conformal invariance

1

Ta = 2+ V2)rva'

(2)

iii) Bosonic strings with left and right conformal invariance. There is neither

left nor right world-sheet supersymmetry

1

T anval

A D = 10 heterotic string, in effect, cannot be identified as an asymmetric ground

Th (3)

state of the D = 26 bosonic string. Ideal string gases with D > 4 undergo a phase
transition at Ty with a characteristic power low critical behavior that depends
crucially on D. The distinct thermodynamic properties of the D = 4 system, in
particular (e.g. diverging specific heat), seem to suggest a unique four-dimensional
universe. Alas, if string vacua with different values of D are ground states of the
same string theory, the universality of Ty allows it to be a multi-critical point.

Our observable universe may have emerged at Ty as a membrane embedded in a
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higher dimensional space-time manifold. Such amusing geometrical constructions
have recently been made by Gibbons et al.® It must be noted that coexistence of
distinct “phases” at a multi-critical point is a common phenomenon among many

fluid and magnetic systems with multiple ground states.”

Our discussion so far considered the high temperature behavior of an ideal string
gas. Higher order of the string topological expansion (loop expansion in ¢') and
non-perturbative effects are likely to play an essential role at the Planck scale of
energies and temperatures. In what follows we will attempt to take some of these

effects into account.

It is well known! that the configuration space of a closed non-orientable string
compactified on a circle of radius R contains solitonic states with non-zero winding
number. A bosonic coordinate has left and right moving states with discretized
momenta (Py,, Pg) where Py, + Pgr = % (n = integer) and Py — Pp = 2mR (m =
integer winding number). In the equivalent fermionic language one Dirac fermion
will possess similarly states of discrete momenta and winding numbers.® More
precisely the winding number of a single fermionic state is given by ([A] — [B])/2 +
N;, — Np. Here we take ([A],[B]) to denote the spin structure of the (left, right)
Dirac spinor components. In our notation [A] = A mod2 with [A]e(1,—1). The
left-right net fermion numbers of the state are N;, and Np respectively. We will
now examine the physics of these configurations in the most convenient case of the

bosonic string gas.

The compact part of the closed bosonic string action in flat Euclidean 26-

dim. space is given by

R? 2
S= 4 [ d28,00,0. (4)
Here 0 is compact (8 = 0 + 27n) and o' is the usual string mass scale. The circle S
with radius R is identified with the Euclidean imaginary time. We also identify the
temperature T = ;1n . The theory, as argued before, admits states with non-trivial

winding numbers (vortices) due to non-trivial maps of the world-sheet’s edge on

S(m(S)=2).



More importantly we recognize, in the form of the action of Eq. (4), the continu-
ous limit of the low temperature phase of the XY model (Villain model).® It is well
known that it undergoes a phase transition due to vortex condensation (Kosterlitz-
Thouless transition). These configurations are irrelevant at low temperatures but
they nevertheless drive a phase transition at a critical point Txr. Moreover they
dominate the ground state of the system at T > Tkr.

The action of a single vortex is ~ 27 (%,) In (%) where 3 is an ultraviolet cut-
off associated with the 2-dim. lattice spacing. The entropy of a vortex has a similar
form ~ In (%’) ?  Our action of Eq. (4) is defined up to a temperature T where the
free energy of the vortex (‘%2, — 1) In (%) vanishes. Indeed we trivially observe
this to occur at R = 2va' and Txr = ﬁ;. Remarkably we have rediscovered
the Hagedorn temperature of the bosonic string gas (Eq. (3)). The phase diagram

and coupling constant hyperbolic trajectories (Kosterlitz flows) are depicted in the

X — Y plane of Fig. 1. The fugacity Y = exp — (ChemcalTPOtemia]) measures the
importance of vortices in the system. Our argument ignores interactions between
the vortices as they would give small corrections to T of order exp—1/T. In
the low temperature phase X > Y (X = 4R—:, — 1) , the conformal string action is
identified with the line of renormalization group fixed points on the positive X-axis
where it can only be meaningfully defined. In the high temperature phase (X < Y)
vortices become increasingly important as the trajectories lead us away from the
line of fixed points to larger values of the fugacity Y. We do not know whether there
are non-trivial fixed points in this region and hence any consistent string theories.
Our action of (Eq.(4)), defined in a flat background, is certainly invalid in this
regime. Strings conceivably propagate in a non-trivial background which would
surely contribute to the energy momentum tensor and hence to curvature. This
leads us naturally to speculate that the inflationary phase in the early universe has
a “stringy” origin.!® In such a case the Hawking temperature of the De-Sitter phase

finds a natural interpretation as the Hagedorn temperature of the hot string gas.

This possibility would reconcile inflation with topological defects (cosmic strings)
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that appear in GUT phase trnsitions (10'®> — 10'® GeV) and are candidate seeds for

galaxy formation and the observed large scale structure of the universe.

In conclusion, we identified a mechanism that drives the Hagedorn phase transi-
tion by taking into account non-trivial configurations (vortices) on the string world-
sheet. This is certainly the “tip of the iceberg”. A better understanding of the high
temperature and energy phase in string theory will entail the development of new
theoretical tools. They should be able to deal with infinite genus fluctuations due to
string interactions and string world-sheet interactions, i.e. fluctuations of the sigma

model action on the world-sheet.
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Figure Caption

1. Renormalization flows for the periodic Gaussian (Villain) model. A dashed line
denotes a locus of initial conditions. The low temperature phase (X > Y) is a
domain of attraction of the line of fixed points Y = 0. Only the fixed points
(X > 0,Y = 0) can be reached. For X <Y one is driven away from the X axis.

Here X ~ # — 2(J = spin coupling) and Y = exp — (“he“ﬁcalTPOtential) .
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