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Abstract:
We provide a simple and clear verification of the physical need for temperature gradients
in equilibrium states when gravitational fields are present. Our argument will be built in
a completely kinematic manner, in terms of the gravitational red-shift/blue-shift of light,
together with a relativistic extension of Maxwell’s two column argument. We conclude
by showing that it is the universality of the gravitational interaction (the uniqueness of
free-fall) that ultimately permits Tolman’s equilibrium temperature gradients without
any violation of the laws of thermodynamics.
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Gravity is universal. That, for sure, is something that you will come across when
learning general relativity. Einstein’s gedankenexperiment, with the observer inside
an elevator in a sufficiently long free-fall, having time to experience her own limited
spacetime, just like Alice falling down the rabbit hole and wondering about the universe,
is a really inspiring and surprisingly useful way to do physics. We will apply some of
that way of thinking in this essay.

The question we will like to ask and answer in here is whether all the consequences of
this universal character of gravity have already been fully explored. We believe that
they have not. A major goal of this essay will be to simply and clarify the ideas behind
already existent and well known phenomena. Maybe to show a new interpretation and
way to see the world, more precisely, thermodynamics. We aim to arrive at the end,
to the conclusion that general relativity has a lot to add to classical thermodynamics,
in the same way that thermodynamics can change our way to see some gravitational
effects. Neither black holes nor horizons nor fire-walls will be present. The systems
we will be analyzing are simply boxes full of gases in a pre-defined version of thermal
equilibrium.

We can start by defining thermal equilibrium. Textbooks on non-relativistic thermo-
dynamics normally present something along these lines: If a system is in thermal
equilibrium, its temperature field T (t, xi) will be a constant, t being the proper time
of the observers at rest with respect to the fluid and xi the spatial components in the
chosen coordinate system. On the other hand, relativistic thermodynamics already
understands that this definition is somewhat misleading when gravity is present.

Relativistic thermal equilibrium in a gravitational field has the interesting feature that
the locally measured temperature T (xi), that is, what a physical thermometer would
measure, has a small non-zero spatial gradient [1, 2] 1. Indeed

∇T (z)
T (z)

= − g
c2

(1)

in the flat-earth approximation, with g being the local gravity acceleration and c the
speed of light. Near the surface of the Earth this gradient is approximately 10−16m−1;
certainly negligible in most experimental settings. However, the fact that this is non-
zero implies that there must be subtle revisions in the non-relativistic versions of the
zeroth law, as well as the Clausius version of the second law, and the non-relativistic
Fick’s law [3].

1Somewhat confusingly, in Tolman’s original articles, he uses T0 to denote the locally measured
position-dependent temperature — which we denote T (xi). In contrast, we reserve T0 for the redshifted
temperature, which is spatially constant in thermal equilibrium.
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The Tolman result was first established in general relativity [1, 2], where in any static
gravitational field, that is, a spacetime metric which can be put in the block-diagonal
form2:

ds2 = −N(xi)
2 dt2 + gab dx

adxb, (2)

one can show
T (xi) =

T0
N(xi)

; T0 = T (xi)N(xi). (3)

In this way, we see that we have two distinct temperature functions. One is the locally
measured, position-dependent T (xi) Tolman temperature. The second, T0, represents
the red-shifted temperature.3 It is this T0 temperature, which is spatially constant in
thermal equilibrium, that drives the direction of heat flow in the Clausius version of
the second law, and it is gradients in this temperature that drive the modified version
of Fick’s law:

(heat flux) ∝ ∇T0 = ∇ (T (xi)N(xi)) . (4)

What we want to argue now is that, although extremely well written and didactic,
Tolman’s work [1] creates the impression that the necessary inputs to obtain the tem-
perature gradient are considerably more complex and demanding than they actually
are. Stripped to its essence, Tolman’s argument can be rephrased in a completely
kinematic manner in terms of the gravitational red-shift/blue-shift of light.

Let us further explore the meaning of these words. Consider a static observer looking
at an angle θ (with the horizontal) to a photon gas in which all local thermometers
measure the same local temperature T (xi) (see figure 1-a). As it is well known, if a
photon is travelling along the θ direction from some distance r, it would be coming
from a height z = r sin θ and would suffer a red-shift/blue-shift of a factor (1 + gz/c2)

by the time it finally arrives at the observer.

On the other hand, photons coming from different gravitational equipotential slices
suffer distinct gravitational blue-shifts/red-shifts. In this way, if the locally measured
temperatures T (xi) are spatially constant, the observer will see not a simple Planck
spectrum, but rather a superposition of Planck spectra of different temperatures.

2In terms of the gravitational potential N(x) ≈ 1 + Φ(x) ≈ 1 + gz/c2.
3 T0 is the physical temperature at the place where the gravitational potential Φ is chosen to be

zero. For instance, if we normalize so that Φ = 0 at z = 0, then T0 is just the physical temperature at
z = 0. On the other hand, if we normalize so that N → 1 at spatial infinity, then T0 is the physical
temperature at spatial infinity.
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Figure 1. External observer looking at photons leaking from: a) the box containing the
photon gas with constant temperature; and b) the box with the photon gas in relativistic
thermal equilibrium.

But in this case, the system is not at thermal equilibrium from the point of view of
the observer; we have a reductio ad absurdum. The only way to avoid inconsistency is
taking into account Tolman’s temperature gradients, i.e. to have a position-dependent
temperature T (xi) = T0/(1 + gz/c2) ≈ T0 (1 − gz/c2), since then the gravitational
red-shift/blue-shift will exactly cancel the gradient factor from the temperature, guar-
anteeing that all the Planck spectra photons, when seen by the static observer, will be
perceived to have the same temperature T0 (see figure 1-b).

A crucial point in here is that, although it is important that an external observer will
perceive a constant temperature when looking at the box, the fact the photons inside
the box will inevitably suffer blue-shifts/red-shifts when moving around is what actually
proves the necessity for temperature gradients in equilibrium states in the presence of
gravitational fields.

Now, coming back to gravity’s universality, how are these ideas related? The fact is that,
without gravity’s universal character, Tolman’s temperature gradient would indeed
violate the second law of thermodynamics. The first to notice this was James Clerk
Maxwell [4, 5], as can be seeing in the following argument regarding the equilibrium
temperature of a vertical column of gas:

“[...] if two vertical columns of different substances stand on the same per-
fectly conducting horizontal plate, the temperature of the bottom of each
column will be the same ; and if each column is in thermal equilibrium of
itself, the temperatures at all equal heights must be the same. In fact, if the
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temperatures of the tops of the two columns were different, we might drive
an engine with this difference of temperature, and the refuse heat would pass
down the colder column, through the conducting plate, and up the warmer
column; and this would go on till all the heat was converted into work,
contrary to the second law of thermodynamics.”

Its clear from this argument that horizontal (equilibrium) temperature differences can-
not exist at equal heights. They will necessarily drive heat fluxes and would allow the
construction of a perpetuum mobile. In that manner, the vertical temperature gradi-
ents, if present at all, must be the same in both columns, regardless the material they
are made of. In other words, they must be universal. This is a perfectly valid generally
correct statement. However, Maxwell’s original argument actually has a continuation:

“But we know that if one of the columns is gaseous, its temperature is
uniform [from the non-relativistic kinetic theory of gases]. Hence that of
the other must be uniform, whatever its material.”

This final conclusion, as we now know, ends up not being valid relativistically4. Given
the radiation gas discussion above, we can even rewrite a relativistic version of this
final conclusion as:

But we know that if one of the columns is a photon gas, its temperature
must be position dependent, as given by Tolman’s relation. Hence that of
the other must be position dependent as well, whatever its material.

In this way, Tolman’s temperature gradient can be proved with simple arguments for
any kind of material or physical state of matter.

But, what about the other forces, e.g. electromagnetism? Are equilibrium temperature
gradients in an electron gas, for example, completely ruled out? Well, yes [3]. To prove
this simply consider an electron gas, inside a box, submitted to an external electric
field. Admit thermal equilibrium. Assume also a very low gas density, so that the force
exerted by the external field is much stronger than the interactions between electrons.
If a temperature gradient occurs, it will be aligned with the electric field direction. No
gravitational field is present.

4It is important to point out that, in the non-relativistic limit, Maxwell is actually correct, given
that ∇T (z)→ 0 for c→∞, as can be seen from equation (1).
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In case a temperature gradient exists after equilibrium is reached, we can, for example,
place next to the just mentioned electron gas a box filled with electrically neutral
particles, i.e. photons, neutrons, etc. Due to its neutrality, it will not interact with the
electric field, thus having no reason at all to present a temperature gradient. Continuing
the argument on the same lines as Maxwell did, we can see that this situation would
indeed generate heat flows, enabling a perpetual motion machine of the second kind.

The validity of this argument comes from the non-universal character of electric forces.
All we needed being two different compositions for the columns, one which reacts to the
electric field (charged particles) and one that doesn’t. But that machinery can easily
be extended to any force which is not universal, allowing us to say:

Given that temperature gradients created by any force that is not universal (e.g. de-
pendent on charge, mass, spin,...) allow the creation of heat machines that violate the
second law, these temperature gradients must not exist.

Going even further, up to date no force other than gravity seems to act on all sources
of mass or energy in the same way regardless, so we can even state this as:

Gravity is the only force capable of creating temperature gradients in equilibrium states
without violating any law of thermodynamics.
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