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Abstract

I show that in a general, dynamic spacetime, the rate of change of gravitational

momentum is related to the difference between the number of bulk and boundary

degrees of freedom. All static spacetimes maintain holographic equipartition; i.e.,

in these spacetimes, the number of degrees of freedom in the boundary is equal to

the number of degrees of freedom in the bulk. It is the departure from holographic

equipartition that drives the time evolution of the spacetime. This result, which is

equivalent to Einstein’s equations, provides an elegant, holographic, description of

spacetime dynamics.1

The mathematical answer to the question in the title is given by Einstein’s equation
Ga

b = 8πT a
b , which determine the metric in terms of the matter source. But what does

this equation mean physically? I will show that one can provide an elegant, holographic
answer in terms of an alternative equation:

∫

V

d3x

8π
hab£ξp

ab =
1

2
kBTavg(Nbulk −Nsur) (1)

Here, hab is the induced metric on the t = constant surface, pab is its conjugate mo-
mentum and ξa = Nua is the proper-time evolution vector corresponding to observers
moving with four-velocity ua = −N∇at which is the normal to the t = constant surface.
The Nsur and Nbulk are the degrees of freedom in the surface and bulk of a 3-dimensional
region V and Tavg is the average Davies-Unruh temperature [1] of the boundary. The left
hand side is the time rate of change of gravitational momentum which is driven by the de-
parture from holographic equipartition, indicated by a non-zero value for (Nbulk−Nsur).
The time evolution will cease when Nsur = Nbulk and, in fact, all static geometries obey
this condition of holographic equipartition. The validity of Eq. (1) for all observers (i.e.,
foliations) ensures the validity of Einstein’s equations; thus, Eq. (1) carries the same
physical content as the gravitational field equations. In short, holographic equipartition
dictates the evolution of spacetime geometry.

I will now describe how this result arises [2]. Several recent investigations suggest
that the gravitational field equations have the same status as the equations of elasticity

1Essay written for the Gravity Research Foundation 2014 Awards for Essays on Gravitation; sub-
mitted on 13 March 2014
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or fluid mechanics (for reviews, see e.g., [3]). This connection becomes most apparent
when we use fab ≡ √−ggab as the dynamical variable (instead of the usual gab) and the
corresponding canonical momenta N c

ab defined by:

Na
bc = −Γa

bc +
1

2
(Γd

bdδ
a
c + Γd

cdδ
a
b ) (2)

The variations of these dynamical variables (fabδN c
ab, N

c
abδf

ab) and the variations of
the thermodynamic variables (SδT, T δS) have an one-to-one correspondence [4] when
evaluated on the null surfaces.2

It also turns out that a very similar combination fab£vN
i
ab occurs in the expression

for the conserved current associated with a vector field va. If we decompose the derivative
∇kvj of any vector field vj into the symmetric and anti-symmetric parts by ∇(jvk) ≡
Sjk and ∇[jvk] ≡ Jjk, then the anti-symmetric part J lm leads to a conserved current
J i ≡ ∇kJ

ik; in other words, from every vector field vk in the spacetime, we can obtain a
conserved current, quite trivially. To find a more useful form for this current, we proceed
as follows: From the Lie derivative of the connection £vΓ

a
bc = ∇b∇cv

a +Ra
cmbv

m, one
can obtain, on using Eq. (2), the relation: gbc£vN

a
bc = ∇bJ

ab − 2Ra
bv

b. This gives us
the explicit form of the conserved current

Ja[v] = ∇bJ
ab[v] = 2Ra

bv
b + gij£vN

a
ij (3)

In fact, this is the standard Noether current associated with va which we have derived
without ever mentioning the action principle for gravity or its diffeomorphism invari-
ance!.

While Eq. (3) associates a conserved current (and charge) with any vector field, those
related to the vector, describing the time evolution, are of special interest. The vector
ξa = Nua measures the proper-time lapse corresponding to the normal ua = −N∇at
of the t = constant surfaces in any spacetime. (In static spacetimes, for example, we
can choose ξa to be the Killing vector.) An elementary calculation shows [2] that the
Noether charge associated with ξa has a simple, nice form with direct thermodynamic
meaning. We get:

uaJ
a(ξ) = 2Dα(Naα) (4)

where ai ≡ uj∇ju
i is the acceleration and Dα is the covariant derivative on the t =

constant surface. The acceleration ai has the explicit form Nai = Nul∇lui = hj
i∇jN.

Integrating Eq. (4) over
√
hd3x to obtain the total Noether charge, we find that the

flux of the acceleration is essentially the total Noether charge contained inside a volume.
Noting that we have set 16πG = 1 and adding the correct proportionality constant (now
with G = L2

P !), we get:

∫

V

√
h d3x uaJ

a[ξ] =

∫

V

dΣaJ
a[ξ] =

∫

∂V

√
σ d2x

8πL2
P

(Nrαa
α) (5)

This result is valid for any region V in any spacetime.

2I use the (– + + +) signature and units with c = 1, ~ = 1, kB = 1, 16πG = 1, so that Einstein’s
equations reduce to 2Gab = Tab. The Latin letters run through 0-3 while the Greek letters run through
1-3.
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Let us now choose the boundary to be a N(t,x) = constant surface within the t =
constant surface. In the above expression, rα is then the normal to the N(t,x) = con-
stant surface within the t = constant surface. Therefore, one can write rα ∝ DαN or
ri ∝ hj

i∇jN where hi
j = δij + uiuj is the projection tensor to the t = constant surface.

Since Nai = hj
i∇jN , it follows that ri and ai are in the same direction even in the most

general (non-static, Nα 6= 0) case. This leads to Nrαa
α = Na = (hij∇iN∇jN)1/2. So,

if we choose the boundary to be a surface with N = constant (which is a generalization
of the notion of an equipotential surface), we can interpret Tloc = Nrαa

α/2π = Na/2π
as the (Tolman redshifted) local Davies-Unruh temperature [1] of the observers with
four-velocity ua = −Nδ0a. These observers, who are moving normal to the t =constant
hypersurfaces will have the acceleration a with respect to the local freely falling ob-
servers. The local vacuum of the freely falling frame will appear to be a thermal state
with temperature Tloc = Na/2π to these observers. So we can write:

2

∫

V

√
h d3x uaJ

a[ξ] =

∫

∂V

√
σ d2x

L2
P

(

1

2
Tloc

)

(6)

Thus, (twice) the Noether charge contained in a N = constant surface is equal to the
equipartition energy of the surface when we attribute one degree of freedom to each cell of
Planck area L2

P . Another, equivalent interpretation emerges, if we think of s =
√
σ/4L2

P

as the analogue of the entropy density. Then we get, directly from Eq. (5), the result:
∫

V

√
h d3x uaJ

a[ξ] =

∫

∂V

d2x Ts (7)

which is the heat (enthalpy) density (TS/A) of the boundary surface. Thus, the Noether
charge for the time-development vector, contained in a region of space bounded by an
N(t,x) = constant surface, is equal to the surface heat content. This delightfully simple
interpretation is valid in the most general context without any assumptions like static
nature, existence of Killing vectors, asymptotic behaviour, etc.

Incidentally, the factor 2 on the left hand side of Eq. (6), also solves a puzzle familiar
to general relativists. The integral on the right of Eq. (6) gives (1/2)TA = 2TS if we
take (for the sake of illustration) T= constant on the boundary and S = A/4. Therefore,
the Noether charge Q is just the heat content (enthalpy) Q = TS, which is also clear
from Eq. (7). Thus, the Noether charge is half of the thermal, equipartition energy of
the surface (1/2)TA = 2TS if we attribute (1/2)T per surface degree of freedom. In
the case of the Schwarzschild geometry, for example, the thermal, equipartition energy
of the surface is just the total mass M = 2TS. But what the Noether charge measures
is the heat content (enthalpy) E − F = TS which is precisely (M/2). This leads to
a well-known “problem” when one tries to define the total mass of a spacetime (which
asymptotically tends to the Schwarzschild limit) using the so-called Komar integral.
In this context, ξa will become the standard timelike Killing vector and the Noether
potential will be the Komar potential. The integral one performs with the Killing
vector ξa is identical to the computation of the Noether charge above and one gets
(M/2). In classical relativity, this was considered very puzzling because, in classical
general relativity, we (at best!) only have a notion of energy but no notion of heat
content (TS), free energy (F = E − TS), etc. The thermodynamic perspective —
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which requires ~ to define the Davies-Unruh temperature kBT = (~/c)(κ/2π)) from an
acceleration κ — tells us that the Noether charge is the heat content (enthalpy) TS and
not the energy 2TS, and that the result must be M/2 for consistency. In short, classical
general relativity can only interpret M physically (as energy), while the thermodynamic
considerations allow us to also interpret M/2 physically as the heat content TS. This
is yet another case of thermodynamic considerations throwing light on some puzzling
features of classical general relativity.

Let us next consider the main theme, viz. the dynamics of spacetime. To do this,
we take the dot product of the Noether current Ja[ξ] (given in Eq. (3) with va = ξa)
with ua, use Eq. (4), introduce the gravitational dynamics through Rab = (8πL2

P )Fab

(where Fab ≡ Tab − (1/2)gabT ) and integrate the result over a 3-dimensional region R
with the measure

√
hd3x. This leads to:

∫

R

d3x

8πL2
P

√
huag

ij£ξN
a
ij =

∫

∂R

d2x
√
σ

L2
P

(

Naαr
α

4π

)

−
∫

R

d3xN
√
h (2uaub

Fab) (8)

where rα is the normal to the boundary of the 3-dimensional region. We now choose the
boundary to be a N(t,x)= constant surface within the t = constant surface. As before,
we can then interpret Tloc = Naαr

α/2π = Na/2π as the Tolman redshifted Davies-
Unruh temperature. Further, in the second term, we identify 2NFabu

aub = (ρ+ 3p)N
as the Komar energy density. So Eq. (8) becomes:

1

8πL2
P

∫

R

d3x
√
huag

ij£ξN
a
ij =

∫

∂R

d2x
√
σ

L2
P

(

1

2
kBTloc

)

−
∫

R

d3x
√
h ρKomar (9)

This result, again, has a remarkable physical meaning. If the spacetime is static and
we choose the foliation such that ξa is the Killing vector, then £ξN

a
ij = 0 and the left

hand side vanishes. The equality of two terms on the right hand side can be thought of
as representing the holographic equipartition [5] if we define the bulk and surface degrees
of freedom along the following lines: We count the number of surface degrees of freedom
by allotting one ‘bit’ for each Planck area:

Nsur ≡
A

L2
P

=

∫

∂R

√
σ d2x

L2
P

(10)

We next define an average temperature Tavg of the boundary surface ∂R by:

Tavg ≡ 1

A

∫

∂R

√
σ d2x Tloc (11)

Finally, we define the bulk degrees of freedom Nbulk by the following procedure: If the
energy E in the region R has reached equipartition at the average surface temperature
Tavg, then |E| = (1/2)NbulkkBTavg; that is, we define the number of bulk degrees of
freedom by:

Nbulk ≡ |E|
(1/2)kBTavg

= ± 1

(1/2)kBTavg

∫

R

√
h d3x ρKomar (12)

where E is the total Komar energy in the bulk region R contributing to gravity. (The ±
is to ensure that Nbulk remains positive even when the Komar energy becomes negative.)
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This is the relevant value of Nbulk if we assume equipartition holds for the energy E in
the bulk region with the average surface temperature. Our result in Eq. (9) then says
that comoving observers in any static spacetime will indeed find:

Nsur = Nbulk (Holographic equipartion) (13)

That is, the equipartition is holographic in all static spacetimes.
What is more, Eq. (9) shows clearly that the discrepancy from holographic equipar-

tition — resulting in a non-zero value for the right hand side — drives the dynamical
evolution of the spacetime. We can write Eq. (9) as:

∫

d3x

8πL2
P

√
huag

ij£ξN
a
ij =

1

2
kBTavg(Nsur −Nbulk) (14)

Note that, even in a static spacetime, non-static observers will perceive a departure
from holographic equipartition because Eq. (14) — while being generally covariant —
is foliation dependent through the normal ui. It is, of course, possible for the same
spacetime to be described by two different sets of observers (i.e., foliations) such that
the metric appears static for one while it is non-static for the other. (A simple example
is de Sitter spacetime which is static in spherically symmetric coordinates while time
dependent in FRW coordinates.) Unlike Einstein’s equation Ga

b = 8πT a
b , Eq. (14) clearly

distinguishes observers who perceive the spacetime to be static (for which Nsur = Nbulk)
from those who find it time dependent.

One can rewrite the left hand side of Eq. (14) by relating uag
ij£ξN

a
ij to more familiar

constructs in the Hamiltonian formulation of relativity. A straightforward computation
[2] shows that

√
huag

ij£ξN
a
ij can be expressed as:

√
huag

ij£ξN
a
ij = −hab£ξp

ab; pab ≡
√
h(Khab −Kab) (15)

allowing us to rewrite Eq. (14) in the form of Eq. (1) presented at the beginning of the
essay.

As I mentioned earlier, demanding the validity of Eq. (1) or Eq. (14) for all folia-
tions is mathematically equivalent to Einstein’s equations. While Eq. (14) is a classical
equation, individual parts of it (like Tavg, Nsur) contain ~. This strengthens the idea
that gravitational field equations have the same conceptual status as the equations of
thermodynamics or fluid mechanics, with the Davies-Unruh temperature providing the
link between microscopic and macroscopic descriptions of spacetime. It is remarkable
that the dynamical evolution of the spacetime can be described in such an elegant,
holographic language.
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