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Abstract

Just as the thermal properties of normal matter demands the exis-
tence of microscopic degrees of freedom, the thermal properties of null
surfaces — perceived as local Rindler horizons by accelerated observers
— demands the existence of microscopic degrees of freedom to spacetime.
The distortion of the null surfaces, just like the deformation of an elastic
solid, costs entropy. I show how, just like in the case of an elastic solid,
one can describe the dynamics of the spacetime solid by introducing an
entropy density to the distortion of null surfaces in the spacetime.

1  Warm up: Secret life of matter

Imagine for a moment that you are a physicist working in the late eighteenth
century. Solids, fluids and gases appear to be continuous media to you described
by density field, p(t,x), velocity field, v(¢,x), etc. which are continuous func-
tions on the spacetime. You also understand, by and large, the behaviour of
such systems exzcept for two puzzling features: (a) The dynamical equations
describing the system require certain parameters (like the elastic constants of
the solid, viscosity of a fluid, specific heat of a gas etc.) and you have no clue
how to determine these. (b) You need to attribute an extra physical variable
called temperature which could also be, in general, a function on the spacetime,
T(t,x), related to another mysterious quantity which you have been calling the
heat content of the body through a set of empirical laws of thermodynamics.
For example, an ideal gas seems to obey an equation like PV = RT connecting
two mechanical, kinematical variables P,V to a thermodynamical variable T
You also have a notion of the Avogadro’s number for a gas but you are not clear
what it counts!

Then comes Boltzmann and reveals the secret life of matter. He demolishes
the idea that the matter is a continuum. Instead he suggests that it has discrete
microscopic structures, the random motion of which leads to what you have
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been calling heat energy. The impact of these microscopic particles on the
walls of the container during their random motion can provide a microscopic
explanation for the law PV = RT if we rewrite it as PV = NkgT where
N measures the number of microscopic degrees of freedom and kp is the new
constant introduced by Boltzmann. This constant plays a crucial role in relating
the microscopic degrees of freedom N to two thermodynamic parameters: The
energy E and the temperature T' through the law of equipartition:

AFE 1 dN

which tells you how many microscopic degrees of freedom are needed to store
an energy AF in a region of gas, say, having a temperature T'. The right hand
side of the first equation is made of thermodynamical variables while the left
hand side describes a purely microscopic quantity which has no meaning in the
continuum physics.

Boltzmann also provided a firmer foundation for the concept of entropy S
(through the relation S = kpln). In fact, we now base the macroscopic
description of matter on the thermodynamic function S(E,V) or any other
related thermodynamic potentials (like free energy, enthalpy, ....) derivable
from S. You can have a metal rod or a glass of water at the same temperature
and hence T cannot really distinguish the properties of the system. On the
other hand, the function S(E, V) will be quite different for the two systems and
the dynamics is encoded in the form of the entropy function.

If matter is made of discrete structures, how come it appears continuous?
We now know — a century and more after — that this has to do with the length
scales involved in the problem. The discrete structures occur at the scales of,
say, 1077 cm which is 7 orders below the everyday scales of physics which the
eighteenth century physicists are familiar with. But this secret structure of mat-
ter, hidden from direct experimentation, reveals itself through thermodynamics.
No micro structure, no storage of energy in microscopic degrees of freedom and
hence no heat content or temperature. So, even without direct evidence, just by
knowing the existence of temperature and heat, one can reason out the necessity
for micro structure for matter.

2 Secret life of Spacetime

Move on from matter to spacetime. All evidence suggests that we physicists
today are probably at the similar level of ignorance regarding the microscopic
structure of spacetimes at Planck scales (characterized by Lp = (Gh/c®)Y/? ~
10732 cm) as the late eighteenth century physicists were about the micro struc-
ture of matter! We describe the spacetime by the fields like metric gqp(t, %),
curvature Ry r(t,x) etc. just as the eighteenth century physicists described
matter in terms of density, velocity etc. The spacetime might appear to be
continuous even at the highest energies (~ TeV) we have probed because the
Planck scale (10*° GeV) is still 16 orders of magnitude away! So, is spacetime



a continuous structure all the way or does it have discrete microstructure like
in the case of matter?

In the absence of any hope for direct observations, we again need to use the
thermodynamic arguments just as Boltzmann did. Remarkably enough, these
arguments yield rich dividends and gives us a window to peek into the secret life
of spacetime. This is based on a whole series of peculiar circumstances related
to spacetime dynamics which we will now review rapidly.

Principle of equivalence and a judicious choice of thought experiments [1]
tell us that gravity can be described in terms of the metric and hence directly
influences the causal structure of spacetime. Around any event P in the space-
time, one can introduce a locally inertial frame (LIF) of freely falling observer as
well as local Rindler frames (LRF) of uniformly accelerated observers. What is
more, the null surfaces of the LIF will act as a local Rindler horizon in LRF and
will be perceived to have a temperature T = k/27 where & is the acceleration of
the observer. (The acceleration sets a timescale (1/x) and the local arguments
are valid if (4/x%) < 1 holds; this can always be achieved for a suitable class of
observers.) These observers will also attribute an entropy per unit area of the
Rindler horizon, which — in simplest context — will be a constant.

These features tell you that: (a) Spacetimes, like matter, can be hot and
possess temperature and entropy. (b) All thermodynamics is observer depen-
dent. The latter conclusion should not come as a surprise since any material
can be thought of as a highly excited state of the quantum vacuum; the Davies-
Unruh effect [2] tells us that the temperature attributed to the vacuum itself
depends on the observer and hence the temperature attributed to any highly
excited state — say, a cup of water — will also be observer dependent.

Further theoretical evidence about spacetime micro structure comes in a
form [3] very similar to the eighteenth century physics of matter [4]. For ex-
ample, in a wide class of theories of gravity called Lanczos-Lovelock models —
which include Einstein’s theory as a special case — the gravitational field equa-
tions reduce to a thermodynamic identity on any horizon. What distinguishes
the different theories — i.e., the different dynamics the “spacetime solid” can
exhibit — is encoded in a divergence free entropy tensor Pfj’ which has the sym-
metries of curvature tensor and is related to the Lanczos-Lovelock Lagrangian
by P! = (OL/OR%Y). More remarkably, in any static spacetime, one can prove
an equipartition law similar to the one in Eq. (1) and identify the “Avogadro
number of the spacetime”. It turns out that we now obtain a relation very
similar to the second equation in Eq. (1) relating the energy E in a region V of
the spacetime to an integral over the boundary 0V of that region:
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In this sense, gravity is holographic and a patch of area §A in the transverse
dimensions contribute a surface density of microscopic degrees of freedom given
by
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where €4 is the bi normal to the surface. The second expression holds in
D = 4 Einstein’s theory telling us that every patch of area L?% contributes one
microscopic degree of freedom. This rigorously provable result is probably the
direct link with the discrete micro structure of spacetime just as Eq. (1) was in
the case of matter.

The above results were obtained starting from the field equations of classical
gravity and introducing one single quantum mechanical input, viz. the exis-
tence of Davies-Unruh temperature for the local Rindler horizon as perceived
by accelerated observers near every event. If this paradigm that classical grav-
ity is an emergent phenomenon like fluid mechanics is correct, one should be
able to reverse the logic and obtain the field equations from a thermodynamic
extremum principle directly. I will now describe how this can be done thereby
making the analogy between thermodynamics of matter and thermodynamics
of spacetime complete.

3 Deformations of the spacetime solid

Let us again take a clue from the eighteenth century physics, this time from
the elasticity. The central quantity in studying elastic deformations of a solid
is a deformation field q(t,x) which tells you that points on the solid have been
displaced by an amount (X' — x) = q(¢,x). The thermodynamic potentials like
entropy, free energy etc. are usually taken to be quadratic functionals of the
gradient of the field q, and q itself when external forces are present. Extremising
a suitable thermodynamic functional like entropy density, free energy density
etc. will then lead to the dynamics of the solid.

Incredibly enough, the same idea works for spacetime. Any 4-dimensional
vector field ¢%(z¢) in the spacetime can be thought of as inducing a deformation
of the spacetime by the amount ¢ = % — z® In general, such a deforma-
tion does not cost any entropy except when it distorts a null surface thereby
changing the causal structure. When the null surfaces are distorted, the local
Rindler observers will find that the amount of information accessible to them
has changed. This suggests that we should attribute an entropy density with
every null vector field n*(z) (with n%n, = 0) in the spacetime since one can
associate a deformation of a small patch of null surface in the direction of the
null vector which is normal to it. It can be shown that this idea indeed works
[5]. We can associate a quadratic expression as a thermodynamic potential for
the deformation of the null surface along n®:

3% = Sgrav[n%] + Smatt[n?] = —4PEIV . Vgn® + Topn®n®, (4)

where PS¢ is a tensor having the symmetries of curvature tensor and is divergence-
free in all its indices and T is a divergence-free symmetric tensor. The divergence-
free condition generalizes in a natural fashion the idea of elastic constants to the
spacetime. As can be easily verified [4], demanding the extremum of J[n®] for
all null vectors leads to the gravitational field equation for a theory for which Ty



is the source stress-tensor and Pcaj’ is the entropy tensor, which counts the sur-
face density of microscopic degrees of freedom (see Eq. (3)). Let us explore the
physics behind it a little more especially the concept of distorting a spacetime
solid.

The most natural way of describing the distortion of a null surface S (taken
to to be described by x! = constant in a suitable set of coordinates) associated
with a null congruence ¢* is in terms of the Weingarten coefficients defined as
follows. Because £:V £ = (1/2)9,£> = 0 (where Greek letters like ;2 run through
0,2,3) the covariant derivative of £ along vectors tangent to S is orthogonal to
£ and hence is (also!) tangent to S. Therefore V,£ is a vector which can be
expanded using the coordinate basis e, = 9, on S. Writing this expansion with
a set of coefficients (called Weingarten coefficients) x5 we have

Vol =x",05 =x",esr  Vall =x", (5)
The gravitational entropy is then just:

S = —4PIx X" = —[Tr(xX?) — (Trx)?] (6)
The second expression is for Einstein’s theory, which is similar to the well-known
term involving the extrinsic curvature in ADM action.

The gradient V,gp of a vector field can always be separated into a symmetric
part Sap = (1/2)V (@) and antisymmetric part Fip = (1/2)V[,q5 both of which
have simple physical meanings: S, induces a distortion in the metric field given
by 6gap = 284 while F;, leads to a current J® = V, F*® which is conserved due
to the antisymmetry of F?. In terms of Su, and Fy, the gravitational entropy
density in Eq. (4) becomes:

%grav [na] = 2Pibjdsij de + PadeFachd (7)

When n; is a pure gradient, Fj; will vanish and one can identify the first term
with a structure like Tr(K?)- (Tr K)?. On the other hand, when n, is a local
Killing vector, the contribution from S;; to the entropy density vanishes and we
find that the entropy density is just the square of the antisymmetric potential
F,p. For a general null vector, both the terms contribute to the entropy density.

This suggests that we construct a symmetric S = 4P%S, . and antisym-
metric Fo¢ = 2Pij“dFij tensors using the entropy tensor P*°? of the theory.
Field equations of the theory, arising from extremising the entropy density in
Eq. (7) then reduces to the demand that

G Vb F' = Tup ¢°q° (8)

should hold for all null vectors ¢ which satisfies the condition S,;, = 0 at a given
event x*. This criterion is satisfied by the local Killing vector corresponding to
translations along the proper time of the Rindler observer located at the given
event. (Obviously, the condition will hold only at a point but that is all we need
since we can construct different Rindler observers at different events.) The right



hand side, for null vectors q,, is proportional to the entropy density of matter
while the left hand side, proportional to ¢;J¢, is essentially the gravitational
entropy density obtained from the Noether current of the theory. This equation
can be interpreted as an entropy balance between that of matter and that of a
null surface.

When Sy, # 0, the distortion field induces a metric deformation and the
above entropy balance equation holds if we take away this contribution. In this
case:

qavd(]:ad - Sad) = Tad qd 4a (9)

The right hand side is the matter entropy density which is balanced by the grav-
itational entropy density on the left where we have subtracted the contribution
S arising from the metric distortion. (When we consider g, which satisfies
the local Killing condition, this term will vanish.) In the case of Einstein’s
there the situation is even simpler. In this case S = Sy — ;S and Fob = fab
so that Eq. (8) becomes something very similar to the one in electrodynamics:
qavaba — Tab qaqb.

4 Conclusions

The above arguments show that we obtain a fairly simple description of space-
time by studying the entropic response of the spacetime to distortions induced
by null vector fields. This makes the analogy between material science and
gravitational dynamics quite rigorous and provides a strong case for treating
classical gravity as an emergent phenomenon like elasticity or fluid mechanics.
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