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Abstract

It is well known that one could determine the kinematics of gravity by
using the Principle of Equivalence and local inertial frames. I describe how
the dynamics of gravity can be similarly understood by suitable thought
experiments in a local Rindler frame. This approach puts in proper con-
text several unexplained features of gravity and describes the dynamics
of spacetime in a broader setting than in Einstein’s theory.

History has a habit of playing tricks on physicists. We thought of electrons as
particles and photons as waves, time as absolute and gravity as a force. I argue,
in this essay, that we have similarly misunderstood the true nature of gravity
because of the way the ideas evolved historically. I will show that, when seen
with the ‘right side up’, the description of gravity becomes remarkably simple,
beautiful, and explains features which we never thought needed explanation!
The essay, building on previous results, provides a key conceptual consolidation.

So what was wrong with the historical development of gravity 7 Einstein
started with the Principle of Equivalence and — with a few thought experiments
— motivated why gravity should be described by a metric of spacetime. This
approach gave the correct backdrop for the equality of inertial and gravitational
masses. But then he needed to write down the field equations which govern the
evolution of g, and here is where the trouble started. There is no good guiding
principle which Einstein could use that leads in a natural fashion to Gu, = KTy
or to the corresponding action principle explaining several false starts he had.
Sure, one can obtain them from a series of postulates but they just do not
have the same compelling force as, for example, the Principle of Equivalence.
Nevertheless, we all accepted general relativity, Einstein’s equations and their
solutions; after all, they agreed with observations so well!

But — conceptually — strange things happen as soon as: (i) we let the
metric to be dynamical and (ii) allow for arbitrary coordinate transformations
or, equivalently, observers on any timelike curve examining physics. Horizons
are inevitable in such a theory and they are always observer dependent. This
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conclusion arises very simply: (i) Principle of equivalence implies that trajecto-
ries of light will be affected by gravity. So in any theory which links gravity to
spacetime dynamics, we can have nontrivial null surfaces which block informa-
tion from certain class of observers. (ii) Similarly, one can construct timelike
congruences (e.g., uniformly accelerated trajectories) such that all the curves in
such a congruence have a horizon. You can’t avoid horizons.

What is more, the horizon is always an observer dependent concept, even
when it can be given a purely geometrical definition. For example, the r = 2M
surface in Schwarzschild geometry acts operationally as a horizon only for the
class of observers who choose to stay at » > 2M and not for the observers falling
into the black hole.

Once we have horizons — which are inevitable — we get into more trouble.
It is an accepted dictum that all observers have a right to describe physics using
an effective theory based only on the variables (s)he can access. (This was,
of course, the lesson from renormalization group theory. To describe physics
at 10 GeV you shouldn’t need to know what happens at 10'* GeV in ”good”
theories.) This raises the famous question first posed by Wheeler to Bekenstein:
What happens if you mix cold and hot tea and pour it down a horizon, erasing
all traces of “crime” in increasing the entropy of the world? The answer to
such thought experiments demands that horizons should have an entropy which
should increase when energy flows across it.

With hindsight, this is obvious. The Schwarschild horizon — or for that mat-
ter any metric which behaves locally like Rindler metric — has a temperature
which can be identified by the Euclidean continuation. If energy flows across
a hot horizon dE/T = dS leads to the entropy of the horizon. Again, histori-
cally, nobody — including Wheeler and Bekenstein — looked at the Euclidean
periodicity in the Euclidean time (in Rindler or Schwarzschild metrics) before
Hawking’s result came! And the idea of Rindler temperature came after that
of black hole temperature! So in summary, the history proceeded as follows:

Principle of equivalence (~ 1908)
= Gravity is described by the metric g, (~ 1908)
? Postulate Einstein’s equations without a real guiding principle! (1915)

= Black hole solutions with horizons (1916) allowing the entropy of hot
tea to be hidden (~ 1971)

= Entropy of black hole horizon (1972)
= Temperature of black hole horizon (1975)
= Temperature of the Rindler horizon (1975-76).

This historical sequence raises a some serious issues for which there is no satis-
factory answer in the conventional approach:

1. How can horizons have temperature without the spacetime having a mi-
crostructure?

It simply cannot. Recall that the thermodynamic description of matter at fi-
nite temperature provides a crucial window into the existence of the corpuscular



substructure of solids. As Boltzmann taught us, heat is a form of motion and we
will not have the thermodynamic layer of description if matter is a continuum
all the way to the finest scale and atoms did not exist! The mere existence of
a thermodynamic layer in the description is proof enough that there are micro-
scopic degrees of freedom. — in a solid or in a spacetime. In the conventional
approach, we are completely at a loss to understand why horizons are hot or
what kind of ‘motion’ is this ‘heat’?

2. Why is it that Einstein’s equations reduces to a thermodynamic identity
for virtual displacements of a horizon?

Here is the first algebraic mystery — which has no explanation in conven-
tional approach — suggesting a deep connection between the dynamical equa-
tions governing the metric and the thermodynamics of horizons. The first exam-
ple was provided in ref. [1] in which it was shown that, in the case of spherically
symmetric horizons, Einstein’s equations can be interpreted as a thermody-
namic relation T'dS = dE + PdV arising out of virtual radial displacements of
the horizon. Further work showed that this result is valid in all the cases for
which explicit computation can be carried out — as diverse as the Friedmann
models as well as rotating and time dependent horizons in Einstein’s theory [2].
Treating them as just some solutions to Einstein’s field equations we cannot
understand these results.

3. Why is Finstein-Hilbert action is holographic with a surface term that
encodes same information as the bulk?

The Einstein-Hilbert Lagrangian has the structure Lgy o R ~ (9g)? + 8%g.
In the usual approach the surface term arising from L, o 9%g has to be
ignored or canceled to get Einstein’s equations from Ly, o< (0g)%. But there
is a peculiar (again unexplained) relationship between Ly, and Ly,

Ov/—=9Lyuik
Vi = 0 (9523 L ) W
This shows that the gravitational action is ‘holographic’ with the same infor-
mation being coded in both the bulk and surface terms making either one of
them to be sufficient. It is well known that varying g, in Lpuy leads to the
standard field equations. More remarkable is the fact that one can also obtain
Einstein’s equations from an action principle which uses only the surface term
and the virtual displacements of horizons [3] without treating the metric as a
dynamical variable.

4. Why does the surface term in Finstein-Hilbert action give the horizon
entropy?

Yet another algebraic result which defies physical understanding! You first
throw away the surface term in the action, vary the rest to get the field equations,
find a solution with a horizon, compute its entropy — only to discover that the
surface term you threw away is intimately related to the entropy.

5. Why do all these results hold for a much wider class of theories than
Einstein gravity, like Lanczos-Lovelock models?

There are more serious ‘algebraic accidents’ in store. Recent work has shown
that all the thermodynamic features described above extend far beyond Einstein’s



theory. The connection between field equations and the thermodynamic relation
TdS = dE + PdV is not restricted to Einstein’s theory (GR) alone, but is in
fact true for the case of the generalized, higher derivative Lanczos-Lovelock
gravitational theory in D dimensions as well [4]. The same is true for the
holographic structure of the action functional [5]: the Lanczos-Lovelock action
has the same structure and — again — the entropy of the horizons is related to
the surface term of the action.

I want to argue that these (and several related features) are not algebraic
accidents but indicate that we have been looking at gravity the wrong way
around. In the proper perspective, these features should emerge as naturally
as the equivalence of inertial and gravitational masses emerges in the geometric
description of the kinematics of gravity. These results show that the thermo-
dynamic description is far more general than just Finstein’s theory and occurs
in a wide class of theories in which the metric determines the structure of the
light cones and null surfaces exist blocking the information. So instead of the
historical path, I will proceed as follows reversing most of the arrows:

Principle of equivalence

= Gravity is described by the metric gq;
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Existence of local Rindler frames (LRFs) with a horizon around any
event

= Temperature of the local Rindler horizon H from the Euclidean con-
tinuation

= Virtual displacements of H allow for flow of energy across a hot hori-
zon hiding an entropy dS = dE/T as perceived by a given observer
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The local horizon must have an entropy, Sgrav

= The dynamics should arise from maximizing the total entropy of hori-
zon (Sgrav) plus matter (S,,) for all LRF’s leading to field equations!

Let me elaborate. Take an event P and introduce a local inertial frame (LIF)
around it with coordinates X*. Go from the LIF to a local Rindler frame (LRF)
coordinates z® by accelerating along, say, x-axis with an acceleration . This
LRF and its local horizon H(z = 0) will exist within a region of size L < R~'/2
as long as k1 < R~1/2 where R is a typical component of curvature tensor.
Now people can pour tea across H as suggested by Wheeler. Alternatively, one
can consider a virtual displacement of the H normal to itself engulfing the tea.
Either way, some entropy will be lost to the outside observers unless the horizon
has an entropy. That is, displacing a piece of local Rindler horizon should cost
some entropy Sgrqv, say. It is then natural to demand that the dynamics should
follow from the prescription §[Sgrav + Smatter] = 0.

All we need is the expressions for Spatter and Sgrqv. I will now write down
the general expressions for both [6], such that they have the correct interpre-
tation in the LRF. Assuming a D(> 4) dimensional spacetime for the later
convenience, I take:

Smatt:/dDa:\/—gTabnanb (2)
y
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where n® is vector field which will reduce to the null normal [9(T — X)] on
the horizon H, T, is the matter energy momentum tensor and P, ¢ is defined
below. The Spatt is easy to understand. In the LRF, (with —gy = 2k =
g%, \/—g = 1) an infinitesimal spacetime region will contribute Tppn’nbd3z dt =
§E dt which on integration over ¢ in the range (0, 3) where 37! = T = (x/27)
gives 0Smatter = BOE = BTupnn’d®xz when the energy flows across a surface
with normal n®. Integrating, we get Smatt to which Eq. (2) reduces to in LRF.
(For example, if Ty, is due to an ideal fluid at rest in LIF, T.yn®n® will contribute
(p+ P), which — by Gibbs-Duhem relation — is just T's where s is the entropy
density. Integrating over /—gd*r = dtd®z with 0 < t < (3 gives Smatt-)

The Syrqv, on the other hand, is a general quadratic functional of the deriva-
tives of n, which is the form of entropy of an elastic solid, say, if n® is the
displacement field. Here we interpret it as the entropy cost for virtual displace-
ment of horizon. The crucial requirement is that, dynamics for the background
spacetime should emerge when we set (6Stot/dn,)=0 for all null vectors n®.
Incredibly enough, this can be achieved if (and only if) (i) the tensor Pupeq
has the algebraic symmetries similar to the Riemann tensor Rgp.q and (ii) we
have V,P% = (0 = V,T%. One can now show that [6] such a tensor can be
constructed as a a series in the powers of the derivatives of the metric:

P4 gii, Riji) = c1 Py (gi;) + c2 Py (gij, Rijwt) + -+ (4)

where c¢1,ca, -+ are coupling constants with the unique m-th order term be-

ing P, o oLy JOR®_, where £'P) is the m-th order Lanczos-Lovelock La-
grangian [3, 7]. Then maximizing (Sgrav + Sm) gives [6]:

- 1
167 | P, R\ — 55;1:;?) = 8T + A5} (5)

These are identical to the field equations for Lanczos-Lovelock gravity with
a cosmological constant arising as an undetermined integration constant. The
lowest order term P = (1/327)(626%—8262) leads to Einstein’s theory while the
first order term gives the Gauss-Bonnet correction. One can show, in the general
case of Lanczos-Lovelock theory, Eq. (3) does give the correct gravitational
entropy justifying our choice.

Let us get back to physics behind all these. The fact that matter crossing
a hot horizon (or the horizon crossing the matter, in a virtual displacement)
in the LRF should cost entropy is my starting point. One then writes down
an expression for (Smatter + Sgrav) and demands that it should be maximized
with respect to all the null vectors — which are normals to local patches of
null surfaces that can act locally as horizons for a suitable class of observers —
in the spacetime. This puts a constraint on the background spacetime leading
to our field equations. To the lowest order, this gives Einstein’s equations with
calculable corrections. These equations are no more fundamental than equations



of elasticity but the thermodynamic identities are indeed fundamental. This
approach answers the questions we raised earlier quite nicely:

e There are microscopic degrees of freedom (“atoms of spacetime”) which we
know nothing about. But just as thermodynamics worked even before we
understood atomic structure, we can understand long wavelength gravity
in a corpuscular spacetime by a thermodynamic approach.

e Einstein’s equations are essentially thermodynamic identities valid for
each and every local Rindler observer. In spacetimes with horizons and
high level of symmetry, one can also consider virtual displacements of
these horizons (like 7y — 7y + €) and obviously we will again get T'dS =
dE + PdV.

e If the the flow of matter across a horizon costs entropy, the resulting grav-
itational entropy has to be related to the microscopic degree of freedom
associated with the horizon surface. It follows that any dynamical descrip-
tion will require a holographic action with both surface and bulk encoding
the same information. For the same reason, the surface term in the action
will give the gravitational entropy.

Most importantly, we are not just reformulating Finstein’s theory; Shifting
the emphasis from Einstein’s field equations to a broader picture of spacetime
thermodynamics of horizons leads to a general class of field equations in Eq.(5)
which includes Lanczos-Lovelock gravity. It is now no surprise that Lanczos-
Lovelock action is also holographic, is related to entropy and has a thermody-
namic interpretation.
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