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Abstract

Principle of equivalence, general covariance and the demand that the
variation of the action functional should be well defined, lead to a generic
Lagrangian for semiclassical gravity of the form L = Q bcd

a Ra
bcd with

∇b Q bcd
a = 0. The expansion of Q bcd

a in terms of the derivatives of
the metric tensor determines the structure of the theory uniquely. The
zeroth order term gives the Einstein-Hilbert action and the first order
correction is given by the Gauss-Bonnet action. Remarkably, any such
Lagrangian can be decomposed into a surface and bulk terms which are
related holographically. The equations of motion can be obtained purely
from a surface term in the gravity sector and hence gravity does not
respond to the changes in the bulk vacuum energy density.

1 Gravity: Kinematics versus Dynamics

The elegance of general relativistic description of gravity rests on the geometric
structure, which — in turn — is based on the Principle of Equivalence (PE).
In its simplest form, PE allows the description of gravity in terms of a metric
tensor and determines the kinematics of gravity (‘how gravity tells matter to
move’) by invoking special relativity in the local inertial frames.

Contrast this with the description of dynamics of gravity (‘how matter tells
spacetime to curve’) for which we completely lack a similar guiding principle.
Classical dynamics has to arise from semiclassical limit of quantum gravity
through the variation of the semiclassical action functional. But we lack a
guiding principle to choose such an action functional! There are several serious
issues which crop up when we try to determine the action functional:

• If gab are the dynamical variables, the natural action functional should
be quadratic in the derivatives ∂g of gab. But PE — which allows us to
reduce gab → ηab, ∂cgab → 0 in any local region — prevents the existence
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of such a generally covariant action. So, general covariance, combined with
PE, forces us to include ∂2g terms in the action; but then the variational
principle becomes ill-defined and needs a special treatment. This situation
is unparalleled in any other theory in physics (like e.g Yang-Mills).

• Further, any such action can only provide a low energy effective description
of gravity. The semiclassical theory is likely to exist in some D dimen-
sional spacetime with D > 4 and quantum corrections will add higher
order correction terms involving squares of the curvature etc. We have no
guiding principle or symmetry to determine these higher order terms.

A closely related question is: What are the true degrees of freedom of grav-
ity? The description in terms of gab may be most geometrical but it is highly
gauge redundant. Any description in terms of an alternative set of variables has
important conceptual implications for dynamics — especially for the problem
of the cosmological constant. For example, if the degrees of freedom of gravity
in a spatial volume V scale as the area S of the bounding surface rather than
the volume, then the bulk cosmological constant cannot produce gravitational
effects. The reduction from volume to area changes the energy density of the
vacuum that is coupled to gravity from the gigantic L−4

P to the observed value
L−4

P (L2
P /S) with S ≈ H−2, as shown in ref. [1, 2].

I will now provide a paradigm in which all these issues can be successfully
tackled at one go. In particular I will show that theories which obey principle
of equivalence and general covariance have a generic structure for their low
energy action functional, using which one can systematically obtain corrections
to classical gravity. When the action is expanded in the powers of curvature, one
obtains the Einstein-Hilbert (EH) action as the unique zero-order term along
with Gauss-Bonnet (GB) type correction as the unique first-order term. What
is probably even more remarkable is that all these action functionals allow a
natural, holographically dual, description; that is, the action functional can be
expressed as a sum of bulk and surface terms with a definite relationship between
the two. The gauge redundancy of geometric description therefore allows all
these theories to be described entirely in terms of surface degrees of freedom
thereby suggesting a natural solution to the cosmological constant problem.

2 Structure of Gravitational Actions

Consider a (generalized) theory of gravity in D-dimensions based on a generally
covariant scalar Lagrangian L which is a functional of the metric gab and curva-
ture Ra

bcd. Instead of treating [gab, ∂cg
ab, ∂d∂cg

ab] as the independent variables,
it is convenient to use [gab,Γi

kl, R
a
bcd] as the independent variables. The cur-

vature tensor Ra
bcd can be expressed entirely in terms of Γi

kl and ∂jΓi
kl and is

independent of gab. To investigate the general “off-shell” structure of the theory,
let us note that any scalar which depends on Ra

bcd can be written in the form
L = Q bcd

a Ra
bcd with the tensor Q bcd

a depending on curvature and metric. (To
be explicit, note that any function L can be written as L = Q bcd

a Ra
bcd with
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Q bcd
a = (L/2R)(δc

agbd − δd
agbc).) Varying the action functional will give, quite

generically,

δA = δ

∫
V

dDx
√
−g L =

∫
V

dDx
√
−g Eabδg

ab +
∫
V

dDx
√
−g∇jδv

j (1)

where δvj depends on (δ
√
−gL/δgab) and (δL/δRa

bcd). To have a good vari-
ational principle leading to the result Eab = Tab, we need to assume that
naδva = 0 on ∂V where na is the normal to the boundary. In general this
requires a particular combination of the variations in the “coordinates” [δgab]
and the “momenta” [∇cδgab] to vanish and we need to put conditions on both
the dynamical variables and their derivatives on the boundary. It is more rea-
sonable in a quantum theory to choose either the variations of coordinates or
those of momenta to vanish rather than a linear combination. It can be shown
[1] that this requires the condition ∇cQ

ijcd = 0 provided Qijcd has a Taylor se-
ries expansion in the curvature tensor. Because of the symmetries, this implies
that Qabcd is divergence-free in all indices.

Using the antisymmetry of Q bcd
a in c, d we can write our Lagrangian as:

√
−gL =

√
−gQ bcd

a Ra
bcd = 2

√
−gQ bcd

a [∂cΓa
db + Γa

ckΓk
db] (2)

An integration by parts followed by straightforward algebra (see section 5 of ref.
[1] for details) now gives

√
−gL = 2∂c

[√
−gQ bcd

a Γa
bd

]
+ 2

√
−gQ bcd

a Γa
dkΓk

bc ≡ Lsur + Lbulk (3)

This result shows that any such gravitational Lagrangian, built from metric
and curvature, has a separation into a surface term (first term) and bulk term
(second term) in a natural but non covariant manner. Ignoring the surface term,
one can obtain the same covariant equations of motion Eab = Tab even from a
non covariant Lagrangian.

We note that Eq. (3) represents the most general effective Lagrangian for
gravity which is consistent with principle of equivalence, general covariance and
the dynamical requirement that a well-defined variational principle should exist.
The structure of the theory is specified by a single divergence-free fourth rank
tensor Q bcd

a having the symmetries of the curvature tensor. The semi classi-
cal, low energy, action for gravity can now be determined from the derivative
expansion of Q bcd

a in powers of number of derivatives:

Q bcd
a (g,R) =

(0)

Qa
bcd(g) + α

(1)

Qa
bcd(g,R) + β

(2)

Qa
bcd(g,R,∇R) + · · · (4)

where α, β, · · · are coupling constants. To determine the first term, say, we only
need to obtain all the possible fourth rank tensors Qabcd which (i) have the
symmetries of curvature tensor; (b) are divergence-free and (iii) are made from
gab; similarly, to obtain the next term, we allow the tensor Qabcd to depend on
gab and Ra

bcd etc. Interestingly enough, at the first two orders, this leads to all
the gravitational theories (in D dimensions) in which the field equations are no
higher than second degree, though we did not demand that explicitly.
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To see this, let us note that if we do not use the curvature tensor, then we
have just one unique choice for zeroth order, made from metric:

(0)

Qa
bcd =

1
2
(δc

agbd − δd
agbc) (5)

which satisfies our constraints. When Q bcd
a is built from metric alone, Eq. (3)

becomes
√
−gL = ∂c

[√
−g(gbdΓc

bd − gbcΓa
ba)

]
+
√
−g(gbdΓa

djΓ
j
ba − gbcΓa

ajΓ
j
bc) (6)

which is precisely the bulk-surface decomposition for Einstein-Hilbert action.
Next, if we allow for Q bcd

a to depend linearly on curvature, then we have
the following additional choice of tensor with required symmetries:

(1)

Qabcd = Rabcd −Gacgbd + Gbcgad + Radgbc −Rbdgac (7)

(In four dimensions, this tensor is essentially the double-dual of Rabcd and in
any dimension can be obtained from Rabcd using the alternating tensor [3].) In
this case, we get

L =
1
2

(
giagbjgckgdl − 4giagbdgckgjl + δc

aδk
i gbdgjl

)
Ri

jklR
a
bcd

=
1
2

[
RabcdRabcd − 4RabRab + R2

]
(8)

This is just the Gauss-Bonnet(GB) action which is a pure divergence in 4 di-
mensions but not in higher dimensions. The unified procedure for deriving
Einstein-Hilbert action and GB action shows that they are more closely related
to each other than previously suspected. The fact [4] that string theoretical
models get GB type terms as corrections is noteworthy in this regard. We can
similarly determine the higher order corrections.

We shall now show that there is another striking relation between the surface
and bulk terms in the Lagrangian in Eq. (3). To see this we begin by noting
that, the Lbulk = 2

√
−g Q bcd

a Γa
dkΓk

bc and Lsur = 2∂c

[√
−gQ bcd

a Γa
bd

]
, are always

related by

Lsur =
1
2
∂c

(
δk
b

∂Lbulk

∂Γk
bc

)
(9)

Using ∂cgab = Γabc +Γbac = Γl
jk[glaδj

bδ
k
c +glbδ

j
aδk

c ] we can express partial deriva-
tives with respect Γl

jk in terms of those with respect to ∂cgab. This leads to the
the remarkable result that, for a generic action functional in Eq. (3) the bulk
and surface terms are related by

Lsur = ∂a

(
gbc

∂Lbulk

∂(∂agbc)

)
(10)

This makes the action intrinsically holographic with the surface term containing
an equivalent information as the bulk. It has been shown earlier (see ref. [5])
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that the bulk and surface terms of Einstein-Hilbert action in Eq. (6) are related
by this identity. The current result shows that this is very general and is based
only on the principle of equivalence (which allows the gravity to be described
by a metric), general covariance (which fixes the generic form of the action) and
demand for the existence of a well defined variational principle (which requires
∇aQabcd = 0).

Further, just as in the case of EH action [6], it is possible to reformulate the
theory retaining only the surface term for the gravity sector. If we consider an
action principle with based on (Am + As) where Am is the matter action and
As is the action obtained from −Lsur (the minus sign is just to ensure that this
is the term which, when added to our action will cancel the surface term) then,
for variations that arise from displacement of a horizon normal to itself, one
gets the equation (Eab − 1

2Tab)ξbξa = 0 where ξa is a null vector. Combined
with the (generalised Bianchi) identity ∇aEab = 0 this will lead to standard
field equations with a cosmological term Eab = (1/2)Tab + Λgab just as in the
case of Einstein-Hilbert action (derived by this route in ref. [6]).

In this approach, which uses only surface degrees of freedom for gravity, the
basic field equations are (Eab − 1

2Tab)ξbξa = 0 where ξa is a null vector. So
the addition of a cosmological constant — by the change Tab → Tab + Λgab

— leaves the equations invariant. Gravity ignores the bulk vacuum energy den-
sity! When generalised Bianchi identity is used, the cosmological constant does
arise as an integration constant; but now, it can be set to any value as a fea-
ture of the solution to the field equations. (It has a status similar to mass in
the Schwarzschild metric). This provides a basic reason for ignoring the bulk
cosmological constant and its changes during various phase transitions in the
universe. The thermodynamic paradigm also impies that if an observer has a
horizon, we should work with the degrees of freedom confined by the horizon.
This changes the pattern of vacuum fluctuations and leads to the correct, ob-
served value of the cosmological constant [2]. These features arise purely from
principle of equivalence and general covariance and is not specific to Einstein’s
theory. Any theory of gravity described by a metric will have similar features
and hence higher order quantum gravitational corrections are likely to respect
these principles.

3 Conclusions

Let us summarize what has been achieved in this formalism and how it success-
fully addresses the questions raised in the Section 1.

Principle of equivalence, general covariance and the demand for the existence
of a well-defined variational principle requires the Lagrangian to be of the form
L = Q bcd

a Ra
bcd with ∇b Q bcd

a = 0. The low energy effective action for gravity
is then determined by the derivative expansion of Q bcd

a in powers of number of
derivatives, given by Eq. (4). The first term gives Einstein-Hilbert action and
the second one is Gauss-Bonnet action. It is worth recalling that such a Gauss-
Bonnet term arises as the correction in string theories [4], as to be expected
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from our general principle.
It is remarkable that any such Lagrangian L = Q bcd

a Ra
bcd with∇b Q bcd

a = 0
can be decomposed into a surface and bulk terms which are related holographi-
cally. The equations of motion can be given a thermodynamic interpretation [5]
expressible as TdS = dE + PdV with the surface term interpreted as entropy.
This fact, that any theory based on principle of equivalence and general covari-
ance can be described by an action principle involving only the surface degrees
of freedom, cuts right into the heart of the matter. The equations of motion
are invariant under the changes to the vacuum energy Tab → Tab +Λgab and we
have a natural solution to the cosmological constant problem. Note that, this
approach, unlike many others, can handle the changes to the vacuum energy
density arising due to phase transitions in the early universe. The observed cos-
mological constant arises due to the vacuum fluctuations in a region confined by
the horizon and — in that sense — is coupled to the surface degrees of freedom
of gravity.

Finally, note that the thermodynamic interpretation (which is on-shell) as
well as the holographic description (which is off-shell) are also applicable to
quantum corrections to the Einstein-Hilbert Lagrangian. This provides a general
principle for determining the correction terms and constraining the structure of
underlying theory.

References

[1] T. Padmanabhan, Dark Energy: Mystery of the Millennium. [astro-
ph/0603114]

[2] T. Padmanabhan Class.Quan.Grav., 22, L107-L110, (2005) [hep-
th/0406060];

[3] D. Lovelock, Jour. Math. Phys., 12, 498 (1971).

[4] B. Zwiebach, Phys. Letts. B 156, 315 (1985).

[5] T. Padmanabhan, Phys. Reports, 406, 49 (2005) [gr-qc/0311036]; Class.
Quan. Grav., 21, L1 (2004) [gr-qc/0310027];

[6] T. Padmanabhan, Int.Jour.Mod.Phys D14, 2263-2270 (2005) [gr-
qc/0510015]; [gr-qc/0412068].

6


