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Abstract

A problem in general relativity is how to extract physical information from solu-
tions to the Einstein equations. Most often information is found from special condi-
tions, e.g., special vector �elds, symmetries or approximate symmetries. Our concern
is with asymptotically �at space-times with approximate symmetry: the BMS group.
For these spaces the Bondi four-momentum vector and its evolution, found at in�n-
ity, describes the total energy-momentum and the energy-momentum radiated. By
generalizing the simple idea of the transformation of (electromagnetic) dipoles under
a translation, we de�ne (analogous to center of charge) the center of mass for asymp-
totically �at Einstein-Maxwell �elds. This gives kinematical meaning to the Bondi
four-momentum, i.e., the four-momentum and its evolution is described in terms of
a center of mass position vector, its velocity and spin-vector. From dynamical ar-
guments, a unique (for our approximation) total angular momentum and evolution
equation in the form of a conservation law is found.
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I. Introduction

The issue of giving physical meaning or interpretation1 to any given solution or
class of solutions of the Einstein equations is essentially an unsolved problem. The
origin of this di¢ culty lies in the arbitrariness in the choice of coordinates. In the
general case, aside from a few interpretative techniques, e.g., the use of geodesic
deviation, there appear to be no widely applicable techniques. The usual procedures
depend on the existence of special conditions or situations, e.g., the existence of
special vector �elds or congruences, algebraically special metrics, available �at-space
approximations, symmetries or approximate symmetries. Probably the largest class of
metrics with an approximate symmetry that has been studied is that of asymptotically
�at space-times, where the approximate symmetry (acting on future null in�nity)
is the BMS group.2 For such space-times one can interpret3 certain terms in the
asymptotic Weyl tensor as the total energy-momentum of the interior source and
identify gravitational radiation, i.e., the Bondi energy and momentum loss, from the
asymptotic Bianchi identities.

It is the purpose of this note to extend these results and identify (again at null
in�nity) a center of mass for the interior sources and a total angular momentum vector,
with evolution equations (from the Bianchi identities) for each. Unfortunately, the
technical details are long and involved so that only an outline and summary of the
basic ideas can be given here. While most attacks on this problem have come from
group theoretic arguments,4{7 ours has a very di¤erent starting point. Our discussion,
though far from mainstream ideas, is strictly based on observing certain properties
of the Maxwell and Einstein-Maxwell equations. It does not involve new physics.

We start with the Maxwell equations in Minkowski space and the trivial observa-
tion of the transformation properties of the electric dipole moment in electrodynamics
under a shift of the origin:

~D�
E = ~DE �Q~R: (1)

The obvious choice of the (time-dependent) translation, ~R = ~DE=Q , determines the
center of charge world-line, making the dipole moment vanish. Though we are deal-
ing with real electromagnetic �elds in real Minkowski space, this trivial observation
can be formally generalized8,9,17 to complex translations de�ning a complex center of
charge world-line around which both the electric and magnetic dipoles vanish. Asso-
ciated with this complex center of charge world-line is a null geodesic congruence in
Minkowski space that is shear-free but twisting. This twisting congruence generalizes
the shear-free and twist-free light-cone congruences emanating from real Minkowski
space world-lines. The complex light-cones emanating from a complex curve in com-
plex Minkowski space when projected into the real Minkowski space generates the
shear-free but twisting congruence.

This observation about �at-space complex curves and light-cones can be general-
ized to asymptotically �at space-times where shear-free congruences are generalized10

to asymptotically shear-free congruences. The result: every regular asymptotically
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shear-free congruence is generated by an arbitrary complex curve in the space of the
complex Poincare translation sub-group of the complexi�ed BMS group. One then
seeks complex curves that encoded complex center of charge or center of mass world-
lines around which the respective complex dipoles vanish - in perfect analogy with
the �at-space Maxwell case.

For Einstein-Maxwell �elds there are two di¤erent asymptotically shear-free null
geodesic congruences and two complex world-lines (center of mass and center of
charge): one from a complex shift of �origin�for the Maxwell dipole �elds, one from
a complex shift of �origin�for the Weyl tensor. We consider only the case when these
curves coincide.11

This unique curve enters the Weyl tensor from its construction giving the Bondi
energy-momentum vector kinematical meaning, i.e., the momentum becomes P =
Mv + :::: , with v being the velocity vector of the real part of the world-line. The
Bondi momentum loss equation then has the form of Newton�s 2nd law, i.e., equations
of motion for the center of mass motion. The imaginary part of the world-line be-
comes the spin angular-momentum. It, with an orbital and precessional contribution,
becomes the total angular momentum, satisfying, via the Bianchi identities, a con-
servation law. There are many checks and cross-checks with already known physics,
e.g., radiation reaction terms, electromagnetic angular momentum loss, that support
our interpretations.

The calculations, (approximations, keeping terms up to 2nd order in deviations
from Reissner-Nordstrom) are only summarized here. The spherical harmonic ex-
pansions12 (with Clebsch-Gordon expansions), are kept to l = (0; 1; 2) harmonics.
We discuss only the vacuum case and relegate the Einstein-Maxwell results to the
conclusion.

II. Some Details

The discussion is divided into two parts: �rst we make several observations
concerning well known dynamical equations (the asymptotic Bianchi) and then we
introduce, at null in�nity, the complex asymptotic dipole, its transformation law and
associated complex center of mass.

1. The early part

Starting with future null in�nity,13 I+, (with Bondi coordinates (u, �; �); u the
Bondi time and (�; �) the complex stereographic coordinates labeling the generators),
our relevant asymptotic Bianchi identities �living�on I+ are14,15

( 01 )
� = �ð 02 + 2�ð(�)� (2)

( 02 )
� = �ð2(�)� � �(�)�� (3)

 02 �  
0

2 = ð
2
� � ð2� + (�)�� � (�)��; (4)
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where ( 01 ,  
0
2 ) are asymptotic components of the Weyl tensor and �(u; �; �) is the

(arbitrary) Bondi shear
� = 24�ij(u)Y 2

2ij + ::: (5)

Introducing the mass aspect, 	; these equations are rewritten as

( 01 )
� = �ð	+ ð�(�)� + 3�ð(�)� + ð3� (6)

	� = ���� (7)

	 = 	 =  02 + ð
2� + �(�)�: (8)

Since the Bondi mass and 3-momentum are identi�ed with the l = (0; 1) harmonic
components of 	; Eq.(7) is the Bondi mass/momentum loss equation. (To agree
with standard notation for retarded time we introduce w =

p
2uc�1; so that (�) =p

2(0)c�1:)
Expanding our variables in spin-s harmonics in the form15

 01 =  01iY
1
1i +  01ijY

1
2ij + ::: (9)

	 = 	 = �2
p
2G

c2
M � 6G

c3
P iY 0

1i +	
ijY 0

2ij + :: (10)

we see from Eq.(8) that both the Bondi mass and momentum, M and P i; are real.
Using the reality of P k; the real and imaginary parts of the l = 1 harmonic

component of Eq.(6) are

p
2

2c
 001kjR = �6G

c3
P k � 2 � (12)

3

5c
(�mj 0R �lmI � �mj 0I �lmR )�ljk; (11)

p
2

2c
 001kjI =

2 � (12)3
5c

(�mj 0R �lmR + �mj 0I �lmI )�ljk; (12)

where we have introduced the real and imaginary parts of �ij :

�ij = �ijR + i�ijI ;

�ij0 � vij = vijR + ivijI :

The imaginary part of Eq.(12) is in the form of a conservation law: the rate of
change of the imaginary part of  01k equals a �ux. This equation is identi�ed as the
conservation of angular momentum.

The real part determines the P k in terms of the derivative of  01kjR:

2. The Transformation

The idea is to imitate the transformation, Eq.(1), at I+; where the full  01k,
de�ned to be proportional to the asymptotic complex dipole moment, is the quantity
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to be transformed to zero. In the calculation, many of the expressions are long: the
non-linear details are hidden in known expressions, N i; N ij; Gi; Ki;�i:

Using the arbitrary world-line associated with an asymptotically shear-free null
geodesic congruence, we have the approximate transformation law10,11 of the complex
dipole:

 0�1k = ( 
0
1 � 3L 02 + :::)jk:

The stereographic angle at I+; L(u; �; �); that de�nes the direction of the shear-free,
twisting congruence, is given by11

L(u; �; �) = (�i(u) +N i)Y 1
1i � (6�ij (u)�N ij)Y 1

2ij + ::::

where �i(u) is the spatial part of the world-line. The complex center of mass is then
determined (analogous to setting D� = 0 in Eq.(1)) by setting  0�1k = 0; yielding

 01k = (3L 
0
2 + :::)jk: (13)

After expansion, (13) becomes

 01i = �
6
p
2G

c2
M [�i(w) + i

1

2
�kjiv

k�j] +Gi: (14)

The imaginary part yields

 01ijI � �6
p
2G

c3
J i (15)

Jk = Mc�kI +M(�iRv
j
R � �iIv

j
I)�ijk +Kk: (16)

while the real part, using Eq.(11), determines the kinematical expression for the 3-
momentum:

P k =MvkR +
M0

c
(viRv

j
I � �iIv

j0
R � (�iRv

j
I)
0)�ijk +�

k: (17)

The two primary results, Eqs.(17) and (16), will be discussed in the conclusions.
Returning to (7), the l = (0; 1) components are

M 0 = �288c
5G

(vijRv
ij
R + vijI v

ij
I ) (18)

P k0 = F k � 192c2

5G
(vljI v

ij
R � vljRv

ij
I )�ilk; (19)

the standard Bondi energy-momentum loss equations if �ij is identi�ed with the
quadrupoles by

�ij =
G

12
p
2c4
(Qij00Mass + iQij00Spin):
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III. Conclusion

Our method for extracting physical content from the vacuum space-times can be
applied equally well to the Einstein-Maxwell equations.15 Our major �ndings are:

� The mass has a kinematical correction term, not displayed here, dependent on
the variable quadrupole moment.

� From the charged Kerr-Newman metrics,16,17,11 the imaginary part of the com-
plex position vector is identi�ed with spin angular momentum:

Si =Mc�iI :

From the Maxwell �elds, the magnetic moment is seen11 to be

�i = Q�iI :

with Coulomb charge Q. This leads to the Dirac value of the gyromagnetic ratio,
g = 2: It should be noted that in the elementary particle community18 it has been
speculated that all charged elementary particles with spin have this property. How
our result relates to this speculation is not clear.

� One of the strongest arguments for our interpretations comes from Eq.(12),
which we identi�ed as the conservation of total angular momentum. We have (in-
cluding the Maxwell �eld11)

 001kjI =
2
p
2 � (12)3
5

(�mj 0R �lmR + �mj 0I �lmI )�ljk + (E&M terms)k;

 01ijI � �6
p
2G

c3
J i

Jk = Mc�kI +M(�iRv
j
R � �iIv

j
I)�ijk +Kk + (E&M terms)k:

The Jk; de�ned as the total angular momentum, contains the spin, (Mc�kI ),
the orbital angular momentum (�iRP

j�ijk) and a precession term. The �ux contains
three terms: the gravitational quadrupole radiation, the electromagnetic quadrupole
radiation and a term arising from the electromagnetic (electric and magnetic) dipole
radiation. This latter term is identical to that calculated purely from electromagnetic
theory.20

�The Bondi linear three-momentum, with a Maxwell �eld, is expressed in kine-
matical variables:

P k =MvkR �
2Q2

3c3
vk 0R +

M0

c
viRv

j
I�ijk + ::: (20)

the second and third terms being the classical radiation reaction term21,20 and the
spin-velocity coupling term.19 There is no model building and no in�nities to subtract.

� From the Bondi mass loss equation, in addition to identifying the gravitational
quadrupole, the electromagnetic dipole and quadrupole energy losses and identi�ca-
tions agree exactly with the classical Maxwell results.
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� By substituting the kinematic expression for the momentum, i.e., P k =MvkR�
2Q2

3c3
vk 0R + M0

c
viRv

j
I�ijk + ::: into the Bondi momentum loss, Eq.(19), we obtain the

equations of motion for our world-line. In a sense we �derive� Newton�s 2nd law,
Mv0 = F; where the force is a combination of electromagnetic radiation reaction,21,20

gravitational radiation reaction and a �rocket�recoil force from the electromagnetic
and gravitational momentum loss.

� Finally, it has been shown11 that each of the quantities that were identi�ed as
physical variables, transformed properly under the Lorentz group, i.e., as Lorentzian
tensorial objects.22

We have thus obtained the full dynamics of a radiating, isolated gravitating-
electromagnetic source.

Concluding, we point out that there are unfamiliar terms in our equations that
could be interpreted as predictions of our theoretical construct. How to measure them
is not clear.
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