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Abstract

To make sense of quantum field theory in an arbitrary (globally hyperbolic) curved
spacetime, the theory must be formulated in a local and covariant manner in terms of lo-
cally measureable field observables. Since a generic curvedspacetime does not possess
symmetries or a unique notion of a vacuum state, the theory also must be formulated in
a manner that does not require symmetries or a preferred notion of a “vacuum state” and
“particles”. We propose such a formulation of quantum field theory, wherein the operator
product expansion (OPE) of the quantum fields is elevated to afundamental status, and the
quantum field theory is viewed as being defined by its OPE. Since the OPE coefficients
may be better behaved than any quantities having to do with states, we suggest that it may
be possible to perturbatively construct the OPE coefficients—and, thus, the quantum field
theory. By contrast, ground/vacuum states—in spacetimes,such as Minkowski spacetime,
where they may be defined—cannot vary analytically with the parameters of the theory.
We argue that this implies that composite fields may acquire nonvanishing vacuum state
expectation values due to nonperturbative effects. We speculate that this could account for
the existence of a nonvanishing vacuum expectation value ofthe stress-energy tensor of a
quantum field occurring at a scale much smaller than the natural scales of the theory.
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1 Introduction

Quantum field theory in curved spacetime is a theory wherein matter is treated fully in
accord with the principles of quantum field theory, but gravity is treated classically in accord
with general relativity. Despite its classical treatment of gravity, quantum field theory in
curved spacetime has provided us with some of the deepest insights we presently have into
the nature of quantum gravity. The main purpose of this essayis to argue that it also is
providing us with significant insights into the nature of quantum field theory itself.

One of the key insights that has been obtained by the study of free (i.e., non-self-
interacting) quantum fields in curved spacetime is that—apart from stationary spacetimes or
spacetimes with other very special properties—there is no unique, natural notion of a “vac-
uum state” or of “particles”. Indeed, unless the spacetime is asymptotically stationary at
early or late times, there will not, in general, even be an asymptotic notion of particle states.
Consequently, it is essential that quantum field theory in curved spacetime be formulated
in terms of the local field observables as opposed, e.g., to S-matrices. “Particle detectors”
should be viewed as systems that interact with the local quantum fields [1], whose response
can be calculated independently of any notion of “particles” that one may wish to introduce
[2].

The usual formulations of quantum field theory in Minkowski spacetime (of both the
rigorous and pragmantic kinds) rely on the following three key ingredients that do not
generalize in an obvious way to curved spacetimes: (i) Poincare covariance of the quan-
tum fields; (ii) positivity of total energy (spectrum condition); and (iii) the existence of a
Poincare invariant state (“the vacuum”). With regard to (i), a generic curved spacetime will
not possess any symmetries at all, so no spacetime symmetry requirements of any kind can
be imposed on quantum fields in generic curved spacetimes. With regard to (ii), in the ab-
sence of a time translation symmetry, the total energy of even a classical field is highly time-
slice dependent; since the energy density of a quantum field (in flat or curved spacetime)
can be negative, and, in some simple examples involving freefields in curved spacetime,
the integrated energy density is found to be negative, it seems clear that in curved spacetime
no useful spectrum condition can be formulated in terms of the “total energy-momentum”
of the quantum field. Finally, with regard to (iii), not only is “Poincare invariance” mean-
ingless in curved spacetime, but one cannot expect that there exists a sensible criterion for
picking out a special state of any kind in an arbitrary curvedspacetime.

Nevertheless, in quantum field theory in curved spacetime, it is by now understood that
there does exist a suitable replacement for the requirement, (i), of Poincare covariance of the
quantum fields. Rather than require that the quantum fields be“specially covariant” in the
sense of having the Poincare group act as a symmetry group, werequire the quantum fields
to be “generally covariant” in the sense that they be locallyand covariantly constructed
from the spacetime metric (as well as from other “backgroundstructure” such as space and
time orientations and spin structure). In order to define this notion, it is essential that the
quantum field theory be defined onall (globally hyperbolic) curved spacetimes, since in
order to express the idea that the fields are locally determined by the spacetime metric, it is
necessary to see how the theory changes when we change the metric in an arbitrary way. We
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then consider the following situation: Let(M,g) and(M′,g′) be two globally hyberbolic
spacetimes that have the property that there exists an isometric imbedding,ρ, of M into
M′, which also preserves causality relations and all of the other background structure. We
require that there be a corresponding isomorphism,χρ, of the algebra of field observables
on (M,g) with the subalgebra of field observables on(M′,g′) associated with the region
ρ[M]. Furthermore, we require thatχρ maps each smeared quantum fieldφ(i)( f ) on M
to the corresponding quantum quantum fieldφ(i)(ρ∗( f )) on M′; see [3, 4, 5] for further
discussion.

In addition, there exists a suitable generalization of the spectrum condition, (ii), to
curved spacetime. The key idea is that the “positive energy”properties of quantum fields in
Minkowski spacetime are directly related to their “positive frequency” properties, which, in
turn, are directly related to the short-distance singularity structure of the of then-point func-
tions of the quantum fields. The positive frequency nature ofthe short-distance singularities
of quantum fields can be characterized in a way that generalizes to curved spacetime. Thus,
the spectrum condition used in Minkowski spacetime can be satisfactorily replaced by a
microlocal spectrum conditionin curved spacetime; see [6, 7, 8] for further discussion.

However, it is much less obvious how to find a suitable replacement for property (iii) in
curved spacetime. In Minkowski spacetime, the existence ofa unique, Poincare invariant
state has very powerful consequences, so it is clear that a key portion of the content of
quantum field theory in Minkowski spacetime would be missingif we failed to impose an
analogous condition in curved spacetime. However, we do notbelieve that condition (iii)
can be generalized to curved spacetime by a condition that postulates the existence of a
preferred state with special properties.

Very recently, we have proposed [8] that the appropriate replacement of property (iii)
for quantum field theory in curved spacetime is to postulate the existence of a suitable
operator product expansion(OPE) of the quantum fields. By an OPE, we mean a family of
formulae of the form

〈

φ(i1)(x1) · · ·φ(in)(xn)
〉

ω
≈ ∑

j

C(i1)...(in)
( j) (x1, . . . ,xn;y)

〈

φ( j)(y)
〉

ω
. (1)

Here, theφ(i) denote the complete collection of fields in the theory (whichmay be of arbi-
trary tensorial or spinorial type), including all composite fields. The symbol〈 〉ω denotes

the expectation value in the stateω. Each OPE coefficientC(i1)···(in)
( j) is a distribution on

Mn+1 that is defined in some open neighborhood of the diagonal inMn+1. The symbol “≈”
in eq. (1) means that this equation holds in a suitably strongsense as an asymptotic relation
in the limit thatx1, · · · ,xn → y. A precise definition of what is meant by this asymptotic
relation is given in [8].

It was proposed in [8] that a quantum field theory should be viewed as being constructed
from the list of quantum fieldsφ(i) together with the family of all OPE coefficients

C (M) ≡
{

C(i1)···(in)
( j) (x1, . . . ,xn;y)

}

, (2)

whereM denotes all of the background structure, i.e., the spacetime (M,g) together with
choices of space and time orientations and spin structure. Given C (M), the quantumfield
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algebraof observables,A (M), is then constructed by starting with the free algebra Free(M)
generated by the smeared fieldsφ(i)( f ) and factoring it by certain relations. These relations
consist of some “universal” relations that do not depend on the particular theory under
consideration (such as linearity ofφ(i)( f ) in f ) together with certain relations that arise
from the OPE. The precise construction ofA (M) is given in [8]. Thestate spaceS (M) is
then defined to be the subspace of the space of all linear, functionalsω : A (M)→C that are
positive in the sense thatω(A∗A) ≡ 〈A∗A〉ω ≥ 0 for all A∈ A (M), that satisfy a microlocal
spectrum condition, and that satisfy the OPE relations, eq.(1).

The collection of OPE coefficientsC (M) is, of course, not arbitrary but must satisfy
certain general properties, which, in effect, become the “axioms” of quantum field theory
in curved spacetime. The key properties that the OPE coefficients are required to satisfy
include the following: (1) EachC(i1)···(in)

( j) (x1, . . . ,xn;y) must be locally and covariantly con-

structed from the background structureM. (2) EachC(i1)···(in)
( j) (x1, . . . ,xn;y) must satisfy a

microlocal spectrum condition. (3) The coefficient,C(i)(i⋆)
(1) , of the identity element,1, must

be the most singular OPE coefficient appearing on the right side of eq. (1) in the expansion
of φ(i)(x1)φ(i)∗(x2). Furthermore, fori 6= 1, this coefficient must be singular in the sense of
having positive scaling degree asx1,x2 → y. (4) If we let x1, · · · ,xn → y at different rates,

then theC(i1)···(in)
( j) (x1, . . . ,xn;y) must satisfy an “associativity condition” corresponding to

what one would formally obtain by first performing an OPE for the subset of points that
merge together the fastest, then performing an OPE on the resulting product of operators
for the (merged) points that merge the second-fastest, etc.A precise statement of this con-
dition and a complete enumeration of all of the other conditions we require for an OPE can
be found in [8].

The type of operator product expansion that we require is known to hold in free field
theory and to hold order by order in perturbation theory for interacting quantum fields in
curved spacetime [9]. Thus, what we have proposed can be viewed as elevating the OPE
to the status of a fundamental property of quantum fields. Although the assumption of the
existence of an OPE in quantum field theory in curved spacetime is remarkably different in
nature from the assumption of the existence of a Poincare invariant state in quantum field
theory in Minkowski spacetime, the OPE plays a role similar to that of the existence of
a Poincare invariant state in analyses and proofs; roughly speaking the coefficient of the

identity,C(i1)···(in)
(1) (x1, . . . ,xn;y), in the OPE in curved spacetime plays a role similar to that

of the vacuum expectation value
〈

0|φ(i1)(x1) · · ·φ(in)(xn)|0
〉

in Minkowski spacetime.
Using our new formulation of quantum field theory based on theexistence of a suit-

able OPE, we have proven [8] curved spacetime versions of thespin-statistics theorem
and the PCT theorem. Interestingly, the PCT theorem in curved spacetime has a signifi-
cantly different character than the usual Minkowski version. The Minkowski version asserts
the existence of an (anti-linear) symmetry associated withthe PT isometry of Minkowski
spacetime, which takes quantum fields into their charge conjugates. The curved space-
time version asserts the existence of a symmetry relating the quantum field theory defined
on an arbitrary background structureM to the theory defined on the background structure
M′ obtained fromM by keeping the spacetime manifold, spacetime metric, and spacetime
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orientation the same, but reversing the time orientation. (This symmetry also maps fields
to their charge conjugates.) Thus, for example, the curved spacetime version of the PCT
theorem asserts that for every process that can occur in an expanding universe, there is a
corresponding process (defined by the PCT symmetry) that occurs in the corresponding
contractinguniverse (obtained by reversing the time orientation). We get a “same uni-
verse” version of the PCT theorem only in the case of a spacetime (such as Minkowski
spacetime) that admits an isometry that preserves the spacetime orientation but reverses
the time orientation; by combining the PCT symmetry (which takesA (M) to A (M′)) with
the symmetry arising from such a spacetime isometry (which takesA (M′) to A (M)), we
obtain a symmetry acting onA (M).

However, the potentially most significant ramifications of our new formulation of quan-
tum field theory in curved spacetime concern the nature of quantum field theory itself. In
our new formulation the existence of a “preferred state” no longer plays any role in the
formulation of quantum field theory. States are inherently non-local in character, and the
replacement of the existence of a preferred state by the existence of a suitable OPE —
along with the replacement of Poincare invariance by the condition that the quantum fields
be local and covariant, and the replacement of the spectrum condition by the microlocal
spectrum condition—yields a formulation of quantum field theory that is entirely local in
nature. In this way, the formulation of quantum field theory becomes much more analogous
to the formulation of classical field theory. Indeed, one canview a classical field theory as
being specified by providing the list of fieldsφ(i) occuring in the theory and the list of local,
partial differential relations satisfied by these fields. Solutions to the classical field theory
are then suitably regular sections of the appropriate vector bundles that satisfy the partial
differential relations. Similarly, in our framework, a quantum field theory is specified by
providing the list of fieldsφ(i) occuring in the theory and the list of local, OPE relations
satisfied by these fields. Thus, the OPE relations play a role completely analogous to the
role of field equations in classical field theory. States—which are the analogs of solutions in
classical field theory—are suitably regular (in the sense ofsatisfying the microlocal spec-
trum condition) positive linear maps on the field algebra that satisfy the OPE relations. It
is worth noting that in classical field theory, the field equations always manifest all of the
symmetries of the theory, even in cases where there are no solutions that manifest these
symmetries. Similarly, in our formulation of quantum field theory, the OPE relations that
define the theory should always respect the symmetries of thetheory [10], even if no states
happen to respect these symmetries.

Our viewpoint on quantum field theory is more restrictive than standard viewpoints in
that we require the existence of an OPE. On the other hand, it is less restrictive in that
we do not require the existence of a ground state. This latterpoint is best illustrated by
considering a free Klein-Gordon fieldϕ in Minkowski spacetime

(2−m2)ϕ = 0, (3)

where the mass term,m2, is allowed to be positive, zero, or negative. In the standard
viewpoint, a quantum field theory of the free Klein-Gordon field does not exist in any
dimension whenm2 < 0 and does not exist inD = 2 whenm2 = 0 on account of the non-
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existence of a Poincare invariant state. However, there is no difficulty in specifying OPE
relations that satisfy our axioms for all values ofm2 and allD ≥ 2. In particular, forD = 4
we can choose the OPE-coefficientC of the identity in the OPE ofϕ(x1)ϕ(x2) to be given
by

C(x1,x2;y) = (4)
1

4π2

(

1
∆x2 + i0t

+m2 j[m2∆x2] log[µ2(∆x2 + i0t)]+m2h[m2∆x2]

)

,

where∆x2 = (x1 − x2)
2 and t = x0

1 − x0
2. Hereµ is an arbitrarily chosen mass scale and

j(z) ≡ 1
2i
√

zJ1(i
√

z) is an analytic function ofz, whereJ1 denotes the Bessel function of

order 1. Furthermore,h(z) is the analytic function defined by

h(z) = −π
∞

∑
k=0

[ψ(k+1)+ ψ(k+2)]
(z/4)k

k!(k+1)!
. (5)

with ψ the psi-function. This formula for the OPE coefficient—as well as the corresponding
formulas for all of the other OPE coefficients—is as well defined for negativem2 as for
positivem2. Existence of states satisfying all of the OPE relations fornegativem2 can be
proven by the deformation argument of [11], using the fact that such states exist for positive
m2.

The potential importance of the above example is that it explicitly demonstrates that
the local OPE coefficients can have a much more regular behavior under variations of the
parameters of the theory as compared with state-dependent quantities, such as vacuum
expectation values. The OPE coefficients in the above example are analytic inm2. On the
other hand, the 2-point function of the global vacuum state is, of course, defined only for
m2 ≥ 0 and is given by

〈0|ϕ(x1)ϕ(x2)|0〉 = (6)
1

4π2

(

1
∆x2 + i0t

+m2 j[m2∆x2] log[m2(∆x2 + i0t)]+m2h[m2∆x2]

)

.

This behaves non-analytically inm2 at m2 = 0 on account of the logm2 term. In other
words, in free Klein-Gordon theory, vacuum expectation values cannot be constructed per-
turbatively by expanding aboutm2 = 0—as should be expected, since no vacuum state
exists form2 < 0—but there is no difficulty in perturbatively constructingthe OPE coeffi-
cients by expanding aboutm2 = 0.

In quantum field theory in Minkowski spacetime, attention isusually focused upon
quantities that involve states, such as S-matrix elements.Since the states of interest cannot
be expected to vary analytically with the parameters of the theory, perturbation expressions
for quantities such as S-matrix elements cannot be expectedto converge, and there is ample
evidence that they do not. However, the above considerations suggest the possibility that the
OPE coefficients may have much better behavior than quantities associated with states, and
that the perturbation series for the OPE coefficients may converge. In other words, we are
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suggesting the possibility that within our framework, it may be possible to perturbatively
construct interacting quantum field theories1. Aside from the free Klein-Gordon example
above, the only evidence we have in favor of convergence of perturbative expansions for
OPE coefficients is the example of super-renormalizable theories, such asλϕ4-theory in two
spacetime dimensions [12]. Here, only finitely many terms ina perturbative expansion can
contribute to any OPE coefficient up to any given scaling degree, so convergence (up to any
given scaling degree) is trivial. By contrast, forλϕ4-theory in two spacetime dimensions,
the rigorously constructed, non-perturbative ground state n-point functions can be proven
to be non-analytic atλ = 0; see e.g. [13]. Of course, even if we had the complete list ofOPE
coefficients, we would still need to construct states, whichcannot be done perturbatively.
Nevertheless, it would be potentially very useful to have the OPE coefficients even if one
did not have states (or even an existence proof for states)—just as in classical field theory it
is useful to have the field equations even if one does not have amethod for finding solutions.

In cases—such as free Klein-Gordon theory above—where the OPE coefficientscan
be chosen to be analytic in the parameters of the theory, it seems natural torequire that
the theory be defined so that this analytic dependence holds.This requirement has some
potentially major ramifications, which we now discuss. Since a vacuum expectation value
of a products of fields (i.e., a correlation function) would be expected to have a non-analytic
dependence on the parameters of the theory, it follows that if the OPE coefficients have an
analytic dependence on these parameters, then, even in Minkowski spacetime, some of the
fields appearing on the right side of the OPE eq. (1) must acquire a nonvanishing vacuum
expectation value, at least for some values of the parameters. This point is well illustrated
by the above Klein-Gordon example. It is natural to identifythe next term (i.e., the term
beyond the identity term) in the OPE ofϕ(x1)ϕ(x2) as beingϕ2 (with unit coefficient), i.e.,

ϕ(x1)ϕ(x2) ∼C(x1,x2;y)1+ ϕ2(y)+ ... , (7)

with C(x1,x2;y) given by eq. (4). This corresponds to the usual “point-splitting” definition
of ϕ2, except thatC(x1,x2;y) now replaces〈0|ϕ(x1)ϕ(x2)|0〉. If we take the vacuum expec-
tation value of this formula (form2 ≥ 0, when a vacuum state exists) and compare it with
eq. (6), we obtain

〈0|ϕ2|0〉 = − m2

16π2 log(m2/µ2) . (8)

Thus, we cannot set〈0|ϕ2|0〉 = 0 for all values ofm2. A similar calculation for the stress-
energy tensor ofϕ yields

〈0|Tab|0〉 =
m4

64π2 log(m2/µ2)ηab. (9)

As in other approaches, the freedom to choose the arbitrary mass scaleµ in eq. (4) gives
rise to a freedom to choose the value of the “cosmological constant term” in eq. (9). How-
ever, unlike other approaches, there is no freedom to adjustthe value of the cosmological

1In order to do so, it will be necessary to define the basis fieldsφ(i) appropriately and also to parametrize the
theory appropriately (since a theory with an analytic dependence on a parameter could always be made to appear
non-analytic by a non-analytic reparametrization).
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constant whenm2 = 0 (i.e., we unambiguously obtain〈0|Tab|0〉 = 0 in Minkowski space-
time in that case), and them2-dependence of the cosmological constant is fixed (sinceµ is
not allowed to depend uponm2).

Although the example of the free Klein-Gordon field is, of course, too trivial to be
realistic, it serves to illustrate the conflict between the expected non-analytic behavior of
the left side of eq. (1) and the conjectured analytic behavior of the OPE coefficients—a
conflict that can be resolved only if the operators appearingon the right side of eq. (1)
generically acquire a nonvanishing vacuum expectation value. A much more interesting
example arises for interacting field theories, such as non-abelian gauge theories, where
“nonperturbative” effects are known to arise. If such nonperturbative effects contribute at
finite scaling degree to the field correlation functions appearing on the left side of eq. (1),
then it is natural to expect that they will similarly contribute to the vacuum expectation
values of the fields appearing on the right side. In particular, they may contribute to the
vacuum expectation value of the stress-energy tensor.

One of the great mysteries of modern cosmology is to account for the acceleration of
the present universe. In order to explain the observed acceleration, one must postulate the
existence of “dark energy”, a component of matter that is distributed uniformly throughout
the universe and has large negative pressure. There is growing evidence that “dark energy”
corresponds to a cosmological constant term in Einstein’s equation, i.e., a stress-energy
tensor proportional to the metric. While it is not difficult to imagine how a “vacuum energy”
contribution of this general form to the stress-energy tensor could arise, it is very difficult
to imagine how one could account for the incredible mis-match of scales between the value
of the cosmological constant required to explain the observed acceleration—corresponding
to a length scale of order the Hubble radius—and the natural length scales occurring in
particle physics. We are proposing that this mis-match might be explained if, as we have
argued above, the “vacuum energy” is associated with non-perturbative effects, since non-
perturbative effects can potentially be extremely small compared with the natural scales
appearing in a theory. This possibility appears worthy of further investigation.
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