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Abstract

To make sense of quantum field theory in an arbitrary (glgbajlperbolic) curved
spacetime, the theory must be formulated in a local and @vamanner in terms of lo-
cally measureable field observables. Since a generic cigpadetime does not possess
symmetries or a unique notion of a vacuum state, the thesry mlust be formulated in
a manner that does not require symmetries or a preferredmotia “vacuum state” and
“particles”. We propose such a formulation of quantum fiélelary, wherein the operator
product expansion (OPE) of the quantum fields is elevateduo@amental status, and the
guantum field theory is viewed as being defined by its OPE.&5ihe OPE coefficients
may be better behaved than any quantities having to do vathstwe suggest that it may
be possible to perturbatively construct the OPE coeffisiereind, thus, the quantum field
theory. By contrast, ground/vacuum states—in spacetimgd) as Minkowski spacetime,
where they may be defined—cannot vary analytically with theameters of the theory.
We argue that this implies that composite fields may acquir@vanishing vacuum state
expectation values due to nonperturbative effects. Weusgkecthat this could account for
the existence of a nonvanishing vacuum expectation valdleeo$tress-energy tensor of a
guantum field occurring at a scale much smaller than the alegoales of the theory.
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1 Introduction

Quantum field theory in curved spacetime is a theory wheraittanis treated fully in
accord with the principles of quantum field theory, but ginais treated classically in accord
with general relativity. Despite its classical treatmehg@vity, quantum field theory in
curved spacetime has provided us with some of the deep@gittisisve presently have into
the nature of quantum gravity. The main purpose of this ess&y argue that it also is
providing us with significant insights into the nature of guuan field theory itself.

One of the key insights that has been obtained by the studyeef (i.e., non-self-
interacting) quantum fields in curved spacetime is that—+dpam stationary spacetimes or
spacetimes with other very special properties—there ismgue, natural notion of a “vac-
uum state” or of “particles”. Indeed, unless the spacetisnasymptotically stationary at
early or late times, there will not, in general, even be amgptic notion of particle states.
Consequently, it is essential that quantum field theory mvex spacetime be formulated
in terms of the local field observables as opposed, e.g.,nma@ices. “Particle detectors”
should be viewed as systems that interact with the localtgoafields [1], whose response
can be calculated independently of any notion of “particlkeat one may wish to introduce
[2].

The usual formulations of quantum field theory in Minkowspasetime (of both the
rigorous and pragmantic kinds) rely on the following thresy kngredients that do not
generalize in an obvious way to curved spacetimes: (i) Rocovariance of the quan-
tum fields; (ii) positivity of total energy (spectrum condit); and (iii) the existence of a
Poincare invariant state (“the vacuum”). With regard todigyeneric curved spacetime will
not possess any symmetries at all, so no spacetime symragtriygments of any kind can
be imposed on quantum fields in generic curved spacetimesb. rédjard to (ii), in the ab-
sence of a time translation symmetry, the total energy ai exdassical field is highly time-
slice dependent; since the energy density of a quantum fielite€ or curved spacetime)
can be negative, and, in some simple examples involvingfiedds in curved spacetime,
the integrated energy density is found to be negative, insedear that in curved spacetime
no useful spectrum condition can be formulated in terms ef‘tbtal energy-momentum”
of the quantum field. Finally, with regard to (iii), not only fPoincare invariance” mean-
ingless in curved spacetime, but one cannot expect that thésts a sensible criterion for
picking out a special state of any kind in an arbitrary curspdcetime.

Nevertheless, in quantum field theory in curved spacetihi® by now understood that
there does exist a suitable replacement for the requirerfigraf Poincare covariance of the
guantum fields. Rather than require that the quantum fieldsgezially covariant” in the
sense of having the Poincare group act as a symmetry grougguee the quantum fields
to be “generally covariant” in the sense that they be locafig covariantly constructed
from the spacetime metric (as well as from other “backgrostnaicture” such as space and
time orientations and spin structure). In order to define tidtion, it is essential that the
qguantum field theory be defined @t (globally hyperbolic) curved spacetimes, since in
order to express the idea that the fields are locally deternlny the spacetime metric, it is
necessary to see how the theory changes when we change tiwime arbitrary way. We



then consider the following situation: LéM,g) and(M’,d’) be two globally hyberbolic
spacetimes that have the property that there exists an igorimabedding,p, of M into
M’, which also preserves causality relations and all of therdtlackground structure. We
require that there be a corresponding isomorphigsm of the algebra of field observables
on (M, g) with the subalgebra of field observables @#',g') associated with the region
p[M]. Furthermore, we require thgp maps each smeared quantum figld(f) on M

to the corresponding quantum quantum figld(p.(f)) on M’; see [3, 4, 5] for further
discussion.

In addition, there exists a suitable generalization of thecsum condition, (ii), to
curved spacetime. The key idea is that the “positive enepgyperties of quantum fields in
Minkowski spacetime are directly related to their “pogtivequency” properties, which, in
turn, are directly related to the short-distance singiylatructure of the of the-point func-
tions of the quantum fields. The positive frequency natutb@thort-distance singularities
of quantum fields can be characterized in a way that genesaizcurved spacetime. Thus,
the spectrum condition used in Minkowski spacetime can kisfaetorily replaced by a
microlocal spectrum conditiom curved spacetime; see [6, 7, 8] for further discussion.

However, it is much less obvious how to find a suitable reptead for property (iii) in
curved spacetime. In Minkowski spacetime, the existence wfique, Poincare invariant
state has very powerful consequences, so it is clear thay pdwion of the content of
guantum field theory in Minkowski spacetime would be missfnge failed to impose an
analogous condition in curved spacetime. However, we ddelve that condition (iii)
can be generalized to curved spacetime by a condition thsttilades the existence of a
preferred state with special properties.

Very recently, we have proposed [8] that the appropriatéaognent of property (iii)
for quantum field theory in curved spacetime is to postulbee dxistence of a suitable
operator product expansiofOPE) of the quantum fields. By an OPE, we mean a family of
formulae of the form

<(p(i1) (Xl) .. (p(i”) (Xn)>w ~ ZC((Ijl))(In)(XL . ,Xn;y) <(P(J) (y)>w . (1)
J

Here, theg!) denote the complete collection of fields in the theory (whitdy be of arbi-
trary tensorial or spinorial type), including all compesftelds. The symbo| ), denotes
the expectation value in the staie Each OPE coefficiertt(('jl))“‘('”) is a distribution on
M"*1 that is defined in some open neighborhood of the diagordl"int. The symbol %~
in eg. (1) means that this equation holds in a suitably steamge as an asymptotic relation
in the limit thatxy,--- ,x, — y. A precise definition of what is meant by this asymptotic
relation is given in [8].

It was proposed in [8] that a quantum field theory should be&/eteas being constructed
from the list of quantum fieldg(") together with the family of all OPE coefficients

c(M)= {C((ijl))”‘(i”)(xl,...,xn;y)}, (2)

whereM denotes all of the background structure, i.e., the spaediig) together with
choices of space and time orientations and spin structuireen@ (M), the quantunfield
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algebraof observablesz (M), is then constructed by starting with the free algebra [\ee
generated by the smeared field8( f) and factoring it by certain relations. These relations
consist of some “universal” relations that do not depend lengarticular theory under
consideration (such as linearity gf)(f) in f) together with certain relations that arise
from the OPE. The precise constructionfM ) is given in [8]. Thestate space (M) is
then defined to be the subspace of the space of all lineatjdmatsw: 2 (M) — C that are
positive in the sense thai(A*A) = (A*A), > 0 for all A€ a2 (M), that satisfy a microlocal
spectrum condition, and that satisfy the OPE relations(lgq.

The collection of OPE coefficients(M) is, of course, not arbitrary but must satisfy
certain general properties, which, in effect, become thé'tas” of quantum field theory
in curved spacetime. The key properties that the OPE caaifieiare required to satisfy

include the following: (1) Each:((ijl))"'(i”)(xl, ..., Xn;Y) must be locally and covariantly con-

structed from the background structve (2) EachC((ijl))"‘(i”)(xl,...,xn;y) must satisfy a
microlocal spectrum condition. (3) The coefficieﬁfl)(i*), of the identity element], must

be the most singular OPE coefficient appearing on the rigletsi eq. (1) in the expansion
of @V (x1)@)*(x2). Furthermore, foi # 1, this coefficient must be singular in the sense of

having positive scaling degree gsxz — Y. (4) If we letxy,- - ,x, — y at different rates,

then theC('jl) ('”)(xl,...,xn;y) must satisfy an “associativity condition” correspondiing t
what one would formally obtain by first performing an OPE foe tsubset of points that
merge together the fastest, then performing an OPE on thdtingsproduct of operators
for the (merged) points that merge the second-fastestAgicecise statement of this con-
dition and a complete enumeration of all of the other coadgiwe require for an OPE can
be found in [8].

The type of operator product expansion that we require isvknio hold in free field
theory and to hold order by order in perturbation theory fiteiacting quantum fields in
curved spacetime [9]. Thus, what we have proposed can besdiew elevating the OPE
to the status of a fundamental property of quantum fieldshigh the assumption of the
existence of an OPE in quantum field theory in curved spaedamemarkably different in
nature from the assumption of the existence of a Poincaggiant state in quantum field
theory in Minkowski spacetime, the OPE plays a role simitathat of the existence of
a Poincare invariant state in analyses and proofs; rougidgléng the coefficient of the

identity, C((ill))"'(i”)(xl, ...,Xn;Y), in the OPE in curved spacetime plays a role similar to that

of the vacuum expectation valde|@i?) (x;) - -- ¢ (x,)|0) in Minkowski spacetime.

Using our new formulation of quantum field theory based onekistence of a suit-
able OPE, we have proven [8] curved spacetime versions o$piivestatistics theorem
and the PCT theorem. Interestingly, the PCT theorem in cuspacetime has a signifi-
cantly different character than the usual Minkowski vamsidhe Minkowski version asserts
the existence of an (anti-linear) symmetry associated thghPT isometry of Minkowski
spacetime, which takes quantum fields into their chargeugags. The curved space-
time version asserts the existence of a symmetry relatiegaantum field theory defined
on an arbitrary background structuvk to the theory defined on the background structure
M’ obtained fromM by keeping the spacetime manifold, spacetime metric, aadetjpne
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orientation the same, but reversing the time orientatidinis symmetry also maps fields
to their charge conjugates.) Thus, for example, the curpedetime version of the PCT
theorem asserts that for every process that can occur in@néig universe, there is a
corresponding process (defined by the PCT symmetry) thatredo the corresponding
contracting universe (obtained by reversing the time orientation). Wea“same uni-
verse” version of the PCT theorem only in the case of a spaeefsuch as Minkowski
spacetime) that admits an isometry that preserves the tapacerientation but reverses
the time orientation; by combining the PCT symmetry (whigkesa (M) to 2 (M')) with
the symmetry arising from such a spacetime isometry (whakkga (M’) to 2 (M)), we
obtain a symmetry acting aa(M).

However, the potentially most significant ramifications of new formulation of quan-
tum field theory in curved spacetime concern the nature oftgua field theory itself. In
our new formulation the existence of a “preferred state” orger plays any role in the
formulation of quantum field theory. States are inherentip-focal in character, and the
replacement of the existence of a preferred state by théeexis of a suitable OPE —
along with the replacement of Poincare invariance by theitom that the quantum fields
be local and covariant, and the replacement of the spectandition by the microlocal
spectrum condition—yields a formulation of quantum fielddty that is entirely local in
nature. In this way, the formulation of quantum field theoegdtomes much more analogous
to the formulation of classical field theory. Indeed, one ei@w a classical field theory as
being specified by providing the list of fielg&) occuring in the theory and the list of local,
partial differential relations satisfied by these fieldsluBons to the classical field theory
are then suitably regular sections of the appropriate vduindles that satisfy the partial
differential relations. Similarly, in our framework, a quam field theory is specified by
providing the list of fieldspl) occuring in the theory and the list of local, OPE relations
satisfied by these fields. Thus, the OPE relations play a migptetely analogous to the
role of field equations in classical field theory. States—ehlare the analogs of solutions in
classical field theory—are suitably regular (in the sensgatibfying the microlocal spec-
trum condition) positive linear maps on the field algebra gadisfy the OPE relations. It
is worth noting that in classical field theory, the field equed always manifest all of the
symmetries of the theory, even in cases where there are ntiosd that manifest these
symmetries. Similarly, in our formulation of quantum fieltebry, the OPE relations that
define the theory should always respect the symmetries dhdwey [10], even if no states
happen to respect these symmetries.

Our viewpoint on quantum field theory is more restrictivertiséandard viewpoints in
that we require the existence of an OPE. On the other hand,léss restrictive in that
we do not require the existence of a ground state. This lptiet is best illustrated by
considering a free Klein-Gordon fietdin Minkowski spacetime

(O—m)$p =0, 3)

where the mass terrm?, is allowed to be positive, zero, or negative. In the stasdar
viewpoint, a quantum field theory of the free Klein-Gordorndidoes not exist in any
dimension whemr? < 0 and does not exist i = 2 whenn? = 0 on account of the non-
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existence of a Poincare invariant state. However, there @ifficulty in specifying OPE
relations that satisfy our axioms for all valuesatand allD > 2. In particular, foD =4
we can choose the OPE-coeffici&bf the identity in the OPE o (x1)¢(x2) to be given

by
C(lexz;y) = (4)

pre (Ax2+i0t + m? j[mPAX?] log [ (AX2 +i0t)] + mPh[mPAx?] ) |
whereAx? = (x; — X2)? andt = X} —x0. Herep is an arbitrarily chosen mass scale and
i(2) = z%ﬁJl(iﬁ) is an analytic function of, whereJ; denotes the Bessel function of

order 1. Furthermordy(2) is the analytic function defined by

: (24"
N(z) =~y Wikt 1)+ (kc+ 2 ©)

(k+ 1)1

with s the psi-function. This formula for the OPE coefficient—adlhas the corresponding
formulas for all of the other OPE coefficients—is as well dedirfor negativer? as for
positive?. Existence of states satisfying all of the OPE relationsnegativen? can be
proven by the deformation argument of [11], using the faat fuch states exist for positive
ne.

The potential importance of the above example is that itieiiyl demonstrates that
the local OPE coefficients can have a much more regular bathawmter variations of the
parameters of the theory as compared with state-dependamtities, such as vacuum
expectation values. The OPE coefficients in the above exaargl analytic im?. On the
other hand, the 2-point function of the global vacuum ststef course, defined only for
m? > 0 and is given by

(0]d(x1)d(x2)|0) = (6)

4—i[2 (ﬁ + m? j[mPAx?] log[mP(Ax2 +i0t)] + rr12h[rr12Ax2]> .

This behaves non-analytically m? at m? = 0 on account of the log? term. In other
words, in free Klein-Gordon theory, vacuum expectatiorugalcannot be constructed per-
turbatively by expanding about? = 0—as should be expected, since no vacuum state
exists form? < 0—but there is no difficulty in perturbatively constructitiee OPE coeffi-
cients by expanding aboua¥ = 0.

In quantum field theory in Minkowski spacetime, attentiorugially focused upon
guantities that involve states, such as S-matrix elem&itee the states of interest cannot
be expected to vary analytically with the parameters ofleety, perturbation expressions
for quantities such as S-matrix elements cannot be expeztamhverge, and there is ample
evidence that they do not. However, the above considesatioggest the possibility that the
OPE coefficients may have much better behavior than questiSsociated with states, and
that the perturbation series for the OPE coefficients mayerge. In other words, we are



suggesting the possibility that within our framework, ityri@e possible to perturbatively
construct interacting quantum field theotfieéside from the free Klein-Gordon example
above, the only evidence we have in favor of convergence iéifmative expansions for
OPE coefficients is the example of super-renormalizablerigg, such as¢*-theory in two
spacetime dimensions [12]. Here, only finitely many terma perturbative expansion can
contribute to any OPE coefficient up to any given scaling eéegso convergence (up to any
given scaling degree) is trivial. By contrast, fop*-theory in two spacetime dimensions,
the rigorously constructed, non-perturbative groundestgtoint functions can be proven
to be non-analytic at = 0; see e.g. [13]. Of course, even if we had the complete liIS{RE
coefficients, we would still need to construct states, witiahnot be done perturbatively.
Nevertheless, it would be potentially very useful to have @PE coefficients even if one
did not have states (or even an existence proof for statestag in classical field theory it
is useful to have the field equations even if one does not henatlaod for finding solutions.
In cases—such as free Klein-Gordon theory above—where Big efficientscan
be chosen to be analytic in the parameters of the theoryeinsenatural taequire that
the theory be defined so that this analytic dependence hdldis. requirement has some
potentially major ramifications, which we now discuss. ®8iacvacuum expectation value
of a products of fields (i.e., a correlation function) woutddxpected to have a non-analytic
dependence on the parameters of the theory, it follows thia¢ IOPE coefficients have an
analytic dependence on these parameters, then, even iWskkspacetime, some of the
fields appearing on the right side of the OPE eq. (1) must eegunonvanishing vacuum
expectation value, at least for some values of the parametéis point is well illustrated
by the above Klein-Gordon example. It is natural to identifg next term (i.e., the term
beyond the identity term) in the OPE dfx; )¢ (x2) as beingh? (with unit coefficient), i.e.,

0 (%) (X2) ~ C (X1, X2; )1+ OZ(y) + ..., (7)

with C(xz,X2;y) given by eq. (4). This corresponds to the usual “point-8pt definition

of ¢2, except thaC(xy, %2;y) now replaceg0|d (x1)d(x2)|0). If we take the vacuum expec-
tation value of this formula (fom? > 0, when a vacuum state exists) and compare it with
eg. (6), we obtain

(O0710) =~ log(m? 2. ®

Thus, we cannot s€0|$2|0) = O for all values of?. A similar calculation for the stress-
energy tensor of yields

m?*
(O[Tab|0) = 7= 109(M*/1)Nab . (9)

As in other approaches, the freedom to choose the arbitrasg iscalg in eq. (4) gives
rise to a freedom to choose the value of the “cosmologicasteat term” in eq. (9). How-
ever, unlike other approaches, there is no freedom to attjastalue of the cosmological

In order to do so, it will be necessary to define the basis figldsippropriately and also to parametrize the
theory appropriately (since a theory with an analytic dejeeice on a parameter could always be made to appear
non-analytic by a non-analytic reparametrization).



constant whem? = 0 (i.e., we unambiguously obtaif®|T,p|0) = 0 in Minkowski space-
time in that case), and the?-dependence of the cosmological constant is fixed (girise
not allowed to depend upar?).

Although the example of the free Klein-Gordon field is, of rs®y too trivial to be
realistic, it serves to illustrate the conflict between tkpeeted non-analytic behavior of
the left side of eq. (1) and the conjectured analytic beltaesiche OPE coefficients—a
conflict that can be resolved only if the operators appeanimghe right side of eq. (1)
generically acquire a nonvanishing vacuum expectationevalA much more interesting
example arises for interacting field theories, such as mefism gauge theories, where
“nonperturbative” effects are known to arise. If such notygbative effects contribute at
finite scaling degree to the field correlation functions apjpey on the left side of eq. (1),
then it is natural to expect that they will similarly contite to the vacuum expectation
values of the fields appearing on the right side. In particiley may contribute to the
vacuum expectation value of the stress-energy tensor.

One of the great mysteries of modern cosmology is to accaurthé acceleration of
the present universe. In order to explain the observed ematiln, one must postulate the
existence of “dark energy”, a component of matter that igidisted uniformly throughout
the universe and has large negative pressure. There isrgr@vidence that “dark energy”
corresponds to a cosmological constant term in Einsteigisagon, i.e., a stress-energy
tensor proportional to the metric. While it is not difficudtimagine how a “vacuum energy”
contribution of this general form to the stress-energydesuld arise, it is very difficult
to imagine how one could account for the incredible mis-imaticscales between the value
of the cosmological constant required to explain the olesbacceleration—corresponding
to a length scale of order the Hubble radius—and the natarajth scales occurring in
particle physics. We are proposing that this mis-match imghexplained if, as we have
argued above, the “vacuum energy” is associated with nottbative effects, since non-
perturbative effects can potentially be extremely smathpared with the natural scales
appearing in a theory. This possibility appears worthy offfer investigation.
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