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Abstract

We discuss the essential element of gravity as spacetime curvature and
a gravitational wave as the propagation of spacetime curvature. Electro-
magnetic waves are necessarily localized carriers of spacetime curvature
and hence are also gravitational waves. Thus electromagnetic waves have
dual character and detection of gravitational waves is the routine of our
every-day experience. Regarding the transferring energy from a gravita-
tional wave to an apparatus, both Rosen and Bondi waves lack the essen-
tial characteristic of inducing a gradient of acceleration between detector
elements. We discuss our simple invariant energy expression for general
relativity and its extension. If the cosmological term is present in the field
equations, its universal presence characteristic implies that gravitational
waves would necessarily have an energy aspect in their propagation in
every case.

Essay written for the Gravity Research Foundation 2015 Awards for Essays
on Gravitation

Electromagnetic waves are fields of electromagnetism that propagate at the
speed of light. Similarly, gravitational waves are gravitational fields that prop-
agate at (or at least near) the speed of light. By Einstein’s general relativity, a
gravitational field is simply spacetime curvature, an aspect of spacetime itself,
which is generated by an energy-momentum tensor. Unlike all other fields in
nature which live in spacetime, in essence the gravitational field is spacetime.
Our simple act of moving, changes the distribution of mass density (and hence
the energy-momentum tensor) in the universe. Relativity tells us that the infor-
mation of this change can propagate at most at the speed of light and therefore
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any simple act of moving our bodies induces a flow of changing spacetime cur-
vature. Since we have never actually measured the speed of this flow, we might
not be prepared to call it with confidence, a gravitational wave by the above
description. Some might be inclined to call the propagation a gravitational wave
even if it is non-relativistic and if so, relativity would demand the existence of
such disturbances and hence the existence of gravitational waves.

However, there is another indisputable source of gravitational waves that
we know about exceedingly well. This source is an electromagnetic wave. The
argument is very simple: where there is an electromagnetic wave, there is an
energy-momentum tensor. By the field equations of general relativity, wher-
ever there is an energy-momentum tensor, there is a non-vanishing Ricci tensor,
hence a non-vanishing Riemann tensor which invariantly characterizes the pres-
ence of spacetime curvature. This field of spacetime curvature is necessarily
localized within the region of the energy-momentum tensor (one cannot boost
from the speed c) and it flows with speed c. So we draw the following conclu-
sion: electromagnetic waves have an intrinsic duality: they are necessarily also
gravitational waves. Thus the detection of gravitational waves is the routine of
our everyday existence as we detect electromagnetic waves. It would be very
valuable if a means could be found to explicitly extract the gravitational wave
aspect from the electromagnetic aspect of an electromagnetic wave.

The emphasis on research in gravitational wave detection has focused upon
efforts to register in an apparatus, flows of spacetime curvature through vac-
uum or through at most a non-relativistic medium. To date, this has not been
achieved. Thus-far, the evidence that is presented for the existence of gravi-
tational waves has been indirect, the observations of period changes in binary
pulsar systems. This indirectness adds a layer of complexity that is less than
satisfactory. Far more appealing would be a direct detection and for this, two
basic kinds of detectors have been considered, Weber-type bars and laser inter-
ferometric systems. Naturally tied in to the question of detection is the issue
of energy transfer from wave to detector. This presents an interesting challenge
to us as we have long-argued that energy in general relativity is localized in the
regions of the energy-momentum tensor [1]. By this view, a “pure” gravitational
wave (i.e. one that is not carried by an energy-momentum tensor as in light)
propagating through the vacuum would not carry energy and hence would be
in direct contradiction with Feynman’s “sticky bead” thought experiment. In
this experiment, a bead is free to slide on a stick with a slight degree of friction.
A gravitational wave impinges upon the system and forces the bead to slide,
generating heat in the stick. This is presented as proof that a gravitational wave
displays its reality by virtue of transferring some of its energy to the heating of
the stick. In a paper to be published, we demonstrate the flaws in Feynman’s ar-
gument and conclude that gravitational waves would not force Feynman’s bead
to slide. Here, we point out some of the basic features of the argument.

Generally, one encounters the following typical discussion in the texts: Two
test particles are aligned perpendicular to the propagation direction of a gravi-
tational wave. The wave confronts the particles and by the equation of geodesic
deviation, one determines that the wave induces relative motion between the test
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particles. From this point, there is a leap of faith that one can simply transfer
this knowledge to actual (i.e. non-test) matter, say a stick, held together by
a stress tensor and a pair of beads free to slide along the stick with a small
amount of friction. The standard argument is that the beads will be induced to
slide along the stick, just as the test particles move relative to each other, while
the role of the stick is ignored. In some of our earliest work, we noted that
in general relativity, all stress-energy interacts with an incident gravitational
wave. We had simulated the elastic properties of the stick with electromagnetic
fields and we had found that to lowest order at least, the stick would respond
to the wave in the same manner as did the beads and there would be no sliding,
no rubbing, no heating. To go beyond this in all accuracy, we note that in the
standard-bearer Rosen wave propagating in the z direction [2]

ds2 = dt2 − f2(e2ψdx2 + e−2ψdy2)− dz2 (1)

f = f(t− z), ψ = ψ(t− z), there is no metric x or y dependence to bias a bead
on the stick to move to the right or to the left so it does neither. Similarly,
in the more complicated Bondi et al wave [3], their own analysis has revealed
that their wave is plane-fronted with parallel rays, again lacking the required
character to provide a bias for the shifting of a bead on the stick. In [3], these
authors have focused their attention on acceleration whereas what is required
for the energetics is a gradient of acceleration. It is easy to gain a sense of
what is at play. The leap that others have made from the relative motion of
two test particles in vacuum to deducing a rubbing of beads on a stick might
not have been taken had they considered instead, a line of test particles. One
could not say that any given particle moves either to the left or to the right
when confronted by a wave. Rather, one can see that the spaces between the
particles shrink and expand in a time sequence determined by the nature of the
functions in the metric tensor.

The need for an agency of gradient of acceleration to bring about frictional
heating is evident when we consider this same stick with beads in free-fall in
the field of the earth. To first order, we are at the level where the beads and
the stick fall with acceleration relative to the earth and at the same rate but
there is no relative motion. This is at the level of the equivalence principle. To
the next order, the effect of the beads falling in lines converging to the center
of the earth is one of providing the agency for a gradient of acceleration, and
there is rubbing. What is at work here is the detailed energy interplay between
two bodies, the earth and the apparatus of stick plus beads, an interplay that
is absent in the previous cases.

Regarding the issue of energy in general relativity, one that has evaded a
satisfactory resolution for nearly a century, we have recently proposed a simple
solution [4]. Our approach stems from a generalization of the invariant energy
expression in special relativity. For a system with four-velocity ui and four-
momentum pi, the invariant energy can be expressed by the inner product

E = piui. (2)
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Now we know that the energy including the contribution from gravity, for a sta-
tionary system in general relativity can be expressed by the well-known Tolman
integral as

E =
c4

4πG

∫
R0

0

√
−gd3x (3)

where g is the determinant of the four-dimensional spacetime metric tensor and
R0

0 is the mixed time-time component of the Ricci tensor. It is well to dwell
on this “odd couple”

√
−g and d3x. Their product does not produce a proper

volume element. We cannot alter the first of these because it is an essential
part of the stationary system energy integral. However we are free to extend
our integration beyond three-space and integrate over time as well. In so-doing,
we produce an invariant expression which we refer to as “spacetime energy”.
We suggest that it has been the fixation over nearly a century on our confining
the search for a general relativistic expression for energy to the conventional
three-space that has rendered this search so problematic. However the elements
at play direct us to spacetime rather than to space. This should not be seen
as an unnatural development as the essential domain of relativity is spacetime
rather than space. Thus, guided by (2), the minimal requirements to generalize
(3) to general relativity to be in accord with (2) and maintain invariance are to
employ the full Ricci tensor, to use the four-velocity at each point of the source
and to generalize from three-space with d3x to four-space with d4x,

E =
c4

4πG

∫
Rki u

iuk
√
−gd4x. (4)

We have shown that this simplest extension which maintains invariance is also
the maximal extension [4]. For a stationary system, (4) yields the Tolman
integral times the time that the system has been observed. For a time-dependent
system, the expression can acquire considerable complexity.

A final note concerns the issue of vacuum itself and how it meshes with the
spacetime energy. Originally Einstein introduced the cosmological Λ term into
his field equations as

Rki − 1/2δki R+ Λδki = (8πG/c4)T ki (5)

to render a static universe. This was discarded when the universe was seen to be
dynamic. In recent times, it has been resurrected as the potential embodiment
of “dark energy” to drive the apparent acceleration of the expansion of the
universe. This new Λ term is more logically allowed to have the freedom to
vary with the age of the universe [5]. In either case, taken to the other side
of the field equations, it plays the role of a special energy-momentum tensor.
Thus, if the Λ is present, it is everywhere and gravitational waves even in the
absence of the usual energy-momentum tensor T ki , necessarily play an energy
role everywhere.
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