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Abstract

Black holes behave as thermodynamic systems, and a central task of

any quantum theory of gravity is to explain these thermal properties. A

statistical mechanical description of black hole entropy once seemed re-

mote, but today we suffer an embarrassment of riches: despite counting

very different states, many inequivalent approaches to quantum gravity

obtain identical results. Such “universality” may reflect an underlying

two-dimensional conformal symmetry near the horizon, which can be

powerful enough to control the thermal characteristics independent of

other details of the theory. This picture suggests an elegant description

of the relevant degrees of freedom as Goldstone-boson-like excitations

arising from symmetry breaking by the conformal anomaly.
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The Problem of Universality

Black holes are thermal systems, radiating as black bodies with characteristic temperatures

and entropies. Classically, this behavior is a mystery: by Wheeler’s famous dictum, “black

holes have no hair,” no classical degrees of freedom to account for such thermodynamic

properties. The likely explanation is that the relevant microscopic degrees of freedom are

fundamentally quantum mechanical. Indeed, the Bekenstein-Hawking entropy

S =
Ahorizon

4~G
(1)

depends upon both Planck’s constant ~ and Newton’s constant G, hinting that black hole

thermodynamics unites quantum mechanics and gravity.

Until recently, little was known about such quantum degrees of freedom. Today, we

suffer an embarrassment of riches. Black hole thermodynamics can be explained by

– weakly coupled string and D-brane states [1];

– states of a dual conformal field theory “at infinity” [2];

– horizonless “fuzzball” geometries [3];

– spin network states at [4] or inside [5] the horizon;

– “heavy” degrees of freedom in induced gravity [6];

– elements of a causal set in the horizon’s domain of dependence [7];

– inherently global characteristics [8];

– entanglement entropy of quantum fields across the horizon [9, 10].
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None of these accounts is complete; string theory, for instance, is most reliable for super-

symmetric black holes, while the loop quantum gravity calculations depend on the poorly

understood Immirzi parameter. But within their domains of applicability, all seem to work.

This “problem of universality” is already present within particular models. The simplest

string theory approach, for example, counts weakly coupled brane configurations. But this

computation does not yield the Bekenstein-Hawking formula (1) directly; rather, one must

separately determine the entropy and the horizon area in terms of a set of charges, and then

check, case by case, that they match. Similarly, loop quantum gravity uses special features

of four-dimensional spacetimes; it works for many different (3+1)-dimensional black holes,

but does not explain what happens in other dimensions. More generally, in the absence

of classical degrees of freedom to which one could apply the correspondence principle, it is

not clear why any counting of microstates should reproduce Hawking’s original results [11],

which were based on quantum field theory in a fixed, classical gravitational background.

Symmetries and Microstates

We do not know why such disparate computations yield the same black hole entropy. But

one intriguing possibility is that a classical symmetry near the horizon may govern the

number of degrees of freedom, independent of the details of quantum gravity.

To an observer outside a black hole, the near-horizon region is effectively two-dimensional

and conformally invariant [12, 13]: transverse excitations and dimensionful quantities are

red-shifted away relative to the degrees of freedom in the r-t plane. Thermodynamic quan-

tities such as temperature are conformally invariant [14]; indeed, a conformal description is

powerful enough to determine the flux [15] and spectrum [16] of Hawking radiation.

Remarkably, such a symmetry may also provide a universal explanation of black hole
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entropy. As Cardy has shown [17], the entropy of a two-dimensional conformal field theory

is completely fixed by a few parameters determined by the symmetry. More precisely,

the fundamental symmetry of a two-dimensional conformal field theory is invariance under

holomorphic coordinate transformations z → z + ξ(z), z̄ → z̄ + ξ̄(z̄). The Poisson brackets

of the generators of such transformations form a Virasoro algebra

{L[ξ], L[η]} = L[ξη̇ − ηξ̇] +
c

48π

∫
dt(ξ̇η̈ − η̇ξ̈), (2)

with a corresponding expression for L̄[ξ̄]. The first term on the right-hand side gives the

ordinary commutator of vector fields. The second is the unique central extension, completely

characterized by the “central charge” c. Like other symmetries, conformal invariance implies

the existence of conserved charges: the zero-mode generators L0 = L[ξ0] and L̄0 = L̄[ξ̄0] are

“conformal charges” roughly analogous to energies.

Now consider any two-dimensional conformal field theory for which the lowest eigenvalues

∆0 and ∆̄0 of L0 and L̄0 are nonnegative. Cardy’s striking result is that the asymptotic

density of states at large conformal charge (∆, ∆̄) takes the simple form

ln ρ(∆, ∆̄) ∼ 2π

√
(c− 24∆0)∆

6
+ 2π

√
(c̄− 24∆̄0)∆̄

6
, (3)

independent of any other details of the theory. This is precisely the kind of universal

behavior we need.

How to Ask the Right Question

Before proceeding further, we must confront a fundamental problem: how do we formulate

our questions to ensure that we are asking about a black hole? In semiclassical computations,
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this is not an issue—we simply choose a fixed black hole geometry and analyze fields and

metric fluctuations in that background. In a full quantum theory of gravity, though, we

cannot do this—the components of the metric do not commute, and cannot be specified

simultaneously. We must instead find new conditions strong enough to ensure the presence

of a black hole, but weak enough to be allowed by quantum mechanics.

The simplest conditions of this sort are restrictions on the asymptotic behavior of the

metric. The basic symmetry of general relativity is diffeomorphism invariance, manifested in

the Hamiltonian formalism through a set of constraints—the “diffeomorphism constraints”

Hi and the “Hamiltonian constraint” H⊥—that generate coordinate transformations. When

boundary conditions are imposed, these constraints acquire boundary terms, which can

change their Poisson algebra. For the (2+1)-dimensional black hole, these terms lead to

Virasoro algebra at infinity [18] that gives, via the Cardy formula, just the right enumeration

of states to explain the Bekenstein-Hawking entropy [19]. In general, though, asymptotic

conditions are too weak—they cannot distinguish between a black hole and a “star”—and

the results depend on particular features of (2+1)-dimensional spacetime that are not easily

generalized. Many near-extremal black holes studied in string theory have near-horizon

geometries that look 2+1 dimensional, allowing one to apply this method [2], but clearly a

more general approach would be desirable.

One such generalization is to treat the horizon as a boundary—or, more precisely, as a

hypersurface upon which we impose “boundary conditions.” Once again, such restrictions

alter the symmetry algebra of general relativity. Now, in any spacetime dimension greater

than two, the result is a Virasoro algebra with the right central charge and conformal charges

to yield the Bekenstein-Hawking entropy [20–22]. But the diffeomorphisms whose algebra

leads to this result are generated by vector fields that blow up at the horizon [23, 24], and

this divergence is poorly understood.

4



The newest approach [25, 26] is to impose the existence of a horizon as a constraint on

initial values of gravitational degrees of freedom. We begin again with standard general

relativity, but now add a set of “horizon constraints” Kα = 0 on an initial hypersurface.

These may ensure, for example, that a chosen hypersurface has vanishing expansion and

a prescribed surface gravity. Such horizon constraints will typically fail to commute with

the diffeomorphism and Hamiltonian constraints, but we can cure this in a manner first

suggested by Bergmann and Komar [27]: we add “zero,” in the form of multiples of the

Kα, to Hi and H⊥ to produce new generators that commute with the Kα. This will change

the Poisson algebra of Hi and H⊥, potentially giving rise to the desired central charge.

In [26], this program was carried out for a very general version of two-dimensional dilaton

gravity, using the “radial quantization” techniques popular in string theory. The result was

again a Virasoro algebra that yielded the correct Bekenstein-Hawking entropy. For now,

this “horizon constraint” approach seems the most general; it appears to incorporate both

the “horizon as boundary” results and the method of asymptotic symmetries.

What Are We Counting?

The advantage of the Cardy formula is that while it lets us counts states, it does not

require detailed knowledge of the states being counted. Nevertheless, these results suggest

an interesting effective description of black hole entropy.

In conventional quantum gravity, physical states are required to be invariant under

diffeomorphisms; in our context,

L[ξ]|phys〉 = L̄[ξ̄]|phys〉 = 0. (4)
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If the Virasoro algebra (2) has a central charge, though, such conditions are incompatible

with the Poisson brackets. We know how to weaken (4): we can require, for example, that

only positive frequency modes annihilate physical states [28]. But then new states that had

formerly been excluded—for instance, the “descendant states” L−n|0〉—become physical.

This phenomenon is strongly reminiscent of the Goldstone mechanism [29]. The con-

formal anomaly breaks diffeomorphism invariance, and as a consequence, “would-be pure

gauge” degrees of freedom become physical. For asymptotically anti-de Sitter spacetimes in

three [30] and five [31] dimensions, an explicit description of the resulting degrees of freedom

at infinity is possible; one might hope for something similar at a horizon.

Perhaps the most important open question is whether Hawking radiation and black hole

evaporation can also fit into this approach. As noted above, one can compute Hawking

radiation with techniques that rely on conformal anomalies of the radiating matter fields

[15, 16], and Emparan and Sachs have shown that in 2+1 dimensions, a scalar field can be

coupled to the conformal boundary degrees of freedom to obtain Hawking radiation [32]. If

a similar mechanism could be found at the horizon, it would represent major progress.
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