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Abstract

The theory of holographic space-time (HST) generalizes both string theory and
quantum field theory. It provides a geometric rationale for supersymmetry (SUSY)
and a formalism in which super-Poincare invariance follows from Poincare invari-
ance. HST unifies particles and black holes, realizing both as excitations of
non-commutative geometrical variables on a holographic screen. Compact extra
dimensions are interpreted as finite dimensional unitary representations of super-
algebras, and have no moduli. Full field theoretic Fock spaces, and continuous
moduli are both emergent phenomena of super-Poincare invariant limits in which
the number of holographic degrees of freedom goes to infinity. Finite radius de
Sitter (dS) spaces have no moduli, and break SUSY with a gravitino mass scaling
like Λ1/4. In regimes where the Covariant Entropy Bound is saturated, QFT is
not a good description and HST, and inflation is such a regime. Following ideas
of Jacobson, the gravitational and inflaton fields are emergent classical variables,
describing the geometry of an underlying HST model, rather than “fields asso-
ciated with a microscopic string theory”. The phrase in quotes is meaningless
in the HST formalism, except in asymptotically flat and AdS space-times, and
some relatives of these.
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1 Introduction

The theory of Holographic Space Time (HST) is an attempt to construct a general framework
for models of quantum gravity. By quantum gravity I mean a quantum system, whose
observables can, in some approximation, be computed by solving Einstein’s gravitational
field equations, perhaps coupled to some other classical fields.

HST shares some properties of Quantum Field Theory (QFT), and purports to be the
underlying general theory, of which extant string/M-theory models are special cases. In
particular, it shares with QFT the assignment of an operator algebra A(D) to every causal
diamond D in a Lorentzian space-time. As in QFT, the inclusion relations between operator
algebras encode the causal structure of the space-time. In particular, for any pair of diamond
algebras A(D1,2), there is a common tensor factor O(D1, D2), which consists of all of the
operators localized in the largest causal diamond in the intersection of D1 and D2.

As in QFT, a time-like trajectory, can be characterized by a nested sequence of causal
diamonds, which corresponds to a sequence of operator algebras A(n), each contained in the
next as a tensor factor, A(n + 1) = A(n) ⊗ P . Geometrically these are thought of as the
causal diamonds between pairs of points at larger and larger time-like separation along the
trajectory. Space-time can be viewed as a Cauchy surface, labelled by a coordinate x and a
congruence of non-intersecting time-like trajectories passing through x. This corresponds to
a parametrized set of sequences of operator algebras A(n, x).

There are two major differences between HST and QFT. The holographic screen (holo-
screen) of a causal diamond in d dimensional space-time, is the maximal area, space-like
d − 2 surface on the diamond’s d − 1 dimensional null boundary. A causal diamond with
small enough proper time separation between its past and future tips has a finite area holo-
screen. In QFT the algebra of any causal diamond is infinite dimensional. In HST, a finite
area diamond has a finite dimensional operator algebra, which is the algebra of matrices in
a finite dimensional Hilbert space. The origin of this postulate is the Covariant Entropy
Bound (CEB) of Fischler Susskind and Bousso [1].

One advantage of this postulate is that the quantum information in the sequence of
Hilbert spaces gives a definition of an emergent space-time in terms of purely quantum me-
chanical concepts. That is, the collection of Hilbert spaces H(n, x), and overlap spaces
O(n;x, y) defines both the causal structure of space-time, and the conformal factor. The
latter is specified in terms of the areas of the holoscreens of a collection of causal diamonds,
which becomes a topological cover of the space-time. The quantum theory retains the geo-
metrical notion of time, along each of the time-like trajectories, and requires a specification
of the topological structure of the Cauchy surface which is penetrated by the congruence
of trajectories. This will be done by taking the space of labels, x to be the 0−simplices of
a d − 1 dimensional simplicial complex. In all extant models, the topology is taken to be
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that of flat d− 1 dimensional space, which enables us to model space-time geometries with
infinite spatial Cauchy surfaces with non-positive asymptotic curvature. As we will see, the
formalism can also describe space-times which are the quantum version of de Sitter space
and cosmologies which are de Sitter (dS) in the asymptotic future.

The second major difference between HST and QFT is in some sense more radical and
has to do with the way the Hamiltonian formalism is implemented. In QFT, the Hamiltonian
is traditionally written as an integral over spatial points of a Hamiltonian density. It is well
known that in classical general relativity, there is no gauge covariant meaning to the energy
density. Instead, the energy exists only for space-times which have time-like asymptotic
Killing vectors, and is written as an integral over a surface at infinity. A standard quantum
mechanics with Schrödinger evolution is obtained only when the conformal boundary of
space-time contains a time-like segment. In HST, we instead assign a different Hamiltonian
H(t, x) to each time-like trajectory, where t is the proper time along the trajectory. Each of
these quantum systems, is a complete description of the universe as it would be seen by a
detector traveling along that trajectory. The key dynamical consistency condition of HST is
that, when two trajectories share information, the density matrices prescribed in the overlap
Hilbert space, by the time evolution in each trajectory’s Hilbert space, should be unitarily
equivalent to each other. This is an infinite set of conditions, at each time, and for every
pair of trajectories.

The dynamical consistency conditions of HST are the mathematical formulation of the
notion of observer complementarity [?], and simultaneously a radical reformulation of the
concept of many fingered time familiar from the Wheeler-DeWitt approach to the quantiza-
tion of gravity. The WD approach, in my opinion, makes no sense outside the semiclassical
expansion, nor does any other approach which takes space-time geometry to be a fluctuat-
ing quantum variable. In HST quantum theory refers directly to observables that can be
measured by experiments done along a single time-like trajectory. The philosophical stance
of the theory is thus one of extreme positivism; one might even say solipsism. Space-time
is an emergent construction, which results from an infinite set of solipsistic observers, and
consistency conditions between them.

In asymptotically flat and AdS space-times, time-like trajectories which don’t fall into sta-
ble black holes, have asymptotic causal diamonds whose boundary is the conformal boundary
of the space-time. In such space-times the different observer Hilbert spaces are, asymptoti-
cally, just copies of each other, related by asymptotic symmetries.

The space-time metric is not a fluctuating quantum variable. Instead, the quantum
variables are quantized versions of “the orientations of pixels on the holoscreen”. Thinking
classically for the moment, a pixel is characterized by a null direction, and a bit of trans-
verse hyperplane orthogonal to it. This information is encoded in the Cartan-Penrose (CP)
equation

ψ̄γµψ(γµ)βαψβ = 0,

which implies that ψ̄γµψ is null, and that ψ itself is a null plane spinor for this null vec-
tor. The CP equation is local on the holoscreen, and has local Lorentz invariance. We fix
this gauge redundancy by giving a unique null direction for each point on the screen, as a
consequence of which the solution of the equation is a section of the spinor bundle over the
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screen. For example, for a spherical screen, parametrized by a d− 1 dimensional unit vector
Ω, the gauge choice for the null vector is (±1,Ω). The ± sign correspond to the same null
direction, but when we discuss particles, the distinction will be that between incoming and
outgoing states.

The local scale invariance of the CP equation is broken to a local Z2 by the quantum
commutation relations that we will postulate below. The Z2 is the familiar (−1)F gauge
symmetry of spin-statistics fame. The rest of the statistics gauge symmetry, the SN which
exchanges identical particles, emerges only in the particle physics limit of HST.

Quantum mechanics, in the form of the Covariant Entropy Bound (CEB) now requires
both that the continuous geometry of the classical holoscreen be pixelated and that the
(unitary) representation of the quantum algebra of single pixel variables be finite dimensional.
The conventional notion of pixel may be thought of as the replacement of the algebra of
functions on a manifold by a finite dimensional algebra generated by functions that = 1 on a
single pixel and zero on all others. A more general notion of pixelation replaces the algebra
of functions by a sequence of finite dimensional non-commutative algebras, which converges
to the algebra of functions in an appropriate sense. The non-commutative approach, often
called fuzzy geometry, can incorporate continuous isometry groups at every step.

In [2] J. Kehayias and I proposed an alternative approach to “fuzzification”, which pro-
ceeds from a finite dimensional approximation to the spinor bundle, rather than the algebra
of functions. This can be done in a way which preserves all symmetries, by imposing an
eigenvalue cutoff on the Dirac operator, or a generalized Dirac operator, whose connection
includes contributions from p-form fluxes on the manifold. Dirac fuzzification preserves all
isometries of the manifold, but it also preserves the notion of covariantly constant spinor,
which allows us to preserve SUSY, as well as those elements of the cohomology that are
bilinears in covariantly constant spinors.

Connes [6] has argued that the general properties of the Dirac operator and its relation
to the algebra of functions on a manifold, provides us with a way to generalize metrical
geometry to non-commutative algebras. For physicists, this is best understood by noting
that the short time expansion of the heat kernel of the square of the Dirac operator allows
us to compute the metrical distance between points and a variety of curvature invariants
(the Todd class). In HST, the cutoff Dirac operator on the holoscreen, tells us the number of
generators in the quantum algebra of operators. This determines the area of the holoscreen,
but more detailed properties of the geometry are encoded in the quantum algebra, rather
than in the relation between the Dirac operator and some “fuzzy algebra of functions”.

For compactifications to four dimensional asymptotically flat space-time, the appropriate
commutation relations are

[ψAi (P ), ψ† jB (Q)]+ = δji δ
A
BZPQ.

The indices i, j run from one to N , and A,B from one to N + 1, so that the variables are
elements of the two chiral spinor bundles over the two sphere, with Dirac eigenvalue cutoff
|p| ≤ N + 1

2
. P,Q label a basis of eigenfunctions of the Dirac operator on the internal

manifold, with a Dirac eigenvalue cutoff K. ZPQ is a corresponding basis in the bundle
of differential forms. For fixed i, A the pixel superalgebra has a unitary representation of
dimension P . We demand that it be generated by the action of the fermionic generators on
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a single state. P is thus exponential in the number of fermionic generators.
For large K, the degeneracy of Dirac eigenvalues scales as KD, where D is the dimension

of the smooth manifold we retrieve in the large K limit. Thus the Bekenstein Hawking
formula

π(RMP )2 → N2ln P → KDN2,

suggests an interpretation of N as proportional to the radius of the sphere in Planck units,
while K is the typical linear scale of the internal manifold, in higher dimensional Planck
units. The four dimensional and higher dimensional Planck scales are related by the usual
Kaluza-Klein formula. Note that this worked only because the spinor bundle of a direct
product manifold is a tensor product of the individual spinor bundles.

Asymptotically flat space-time with fixed Planck scale internal dimensions is obtained
by taking a limit N →∞ with K fixed. This limit has several interesting features. First of
all, the “internal geometry” has no moduli, since it is characterized by a finite dimensional
unitary representation of a superalgebra. Moduli would arise if we also took K to infinity. In
this limit there would be a number of effectively continuous ratios of integers, and in HST,
this is the origin of the moduli of string/M theory.

To control the N → ∞ limit, we must invoke a conformal group which acts on the two
sphere. Two known ways of taking the limit lead to SO(1, 3) the conformal group of S2,
or SO(2, 3) the conformal group of S2 × R. These limits correspond to quantum gravity in
asymptotically flat, or AdS space respectively. In the AdS case, the limiting theory must
have a (conjugacy class of) symmetry generators, corresponding to translation along the
real line in the boundary cylinder. The theory must be conformal on the cylinder, and
the principle of asymptotic darkness [5], which says that the Bekenstein-Hawking formula
determines the asymptotic density of states in AdS space, tells us that the theory behaves
like a CFT. This is probably enough to construct a proof of locality of the boundary theory,
which would be a derivation of the AdS/CFT correspondence from HST.

Nothing guarantees that the AdS radius of curvature is large enough so that a long wave-
length quantum effective field theory in the bulk computes the important CFT correlators.
It’s plausible that this should only be true if the limit in which the radius of curvature goes to
infinity exists. That is, the CFT should be part of a sequence or continuous family of CFTs,
such that the radius can be arbitrarily large, and the limiting theory admits a description
as quantum gravity in asymptotically flat space. Recent work on Mellin transformed CFT
correlators makes this conjecture much more plausible [7]. Note however that we have no
robust examples where the internal manifold has fixed size when the AdS radius goes to
infinity.

In the would-be asymptotically flat case, SO(1, 3) invariance of the limiting theory of an
infinite causal diamond, is NOT sufficient to guarantee Poincare invariance. If however, the
internal manifold has a covariantly constant spinor1, then there is a zero mode of the Dirac
operator, whose bilinears include a constant function on the manifold. For the zero mode,
we have

[ψAi (0), ψ† jB (0)]+ = δji δ
A
B.

1More generally, a spinor covariantly constant under a generalized connection which includes SUGRA
fluxes, and a Dirac operator utilizing this connection.

4



We can define combinations of the pixel variables

ψ(Ω0) = ψAi (qiA)Ω0 ,

such that in the limit
[ψ(Ω0), ψ†[q∗]]+ = pq∗(Ω0),

where q(Ω) is any measurable section of the chiral spinor bundle with negative helicity. p is
a positive normalization constant, which arises when taking the continuum limit to make a
delta function distribution.

The conformal Killing spinor equations,

DIqL,R = γ±I πL,R,

are Lorentz covariant and their solutions transform as the left and right chiral spinor repre-
sentations, qα and q∗ ˙beta

of SO(1, 3). They are, of course, complex conjugates of each other.
When we smear the delta function pixel operators with these solutions, we get a set of
operators Qα such that

[Qα, Q̄β̇]+ = pqα(Ω0)q∗
β̇
(Ω0) = p(1,Ω0).

In HST, momentum thus arises from SUSY, and asymptotically flat space is predicted
to be exactly supersymmetric, in agreement with the extant evidence from string theory.
This also leads to an association of SUSY breaking with the positive value of the c.c. in the
real world. To understand that a little better, note that we have, so far, only demonstrated
how to extract one multiplet of supersymmetric particles from the HST formalism. We get
multi-particle states by taking the above described limits in Ki ×Ki blocks, exploiting the
oft used connection between the SN gauge symmetry of block diagonal matrices, and that
of particle statistics.

An interesting constraint arises when N is finite. We’d like to take each Ki large, in order
to make our particles as localizable as possible on the two sphere. However, we’d also like
to have the option of many particle states, in order to have an regime where quantum field
theory is a good approximation. The optimal compromise is to take each Ki ∼

√
N , leading

to a total particle entropy of order N3/2. This means that most of the entropy in a finite
causal diamond is not describable in terms of particles. Indeed, in a theory of gravity, we
expect that the states that saturate the covariant entropy bound are mostly black holes with
a horizon area that of the diamond. The maximal entropy of particle states in a finite region,
which do not form a black hole, is well known to scale like N3/2. Our matrix construction
reproduces this gravitational result from simple counting. One can also follow this intuition
to obtain a simple understanding of the Unruh effect in HST [8]. In our construction of
the SUSY algebra, the block size Ki is proportional to the momentum. In a finite region,
it’s natural to take the unit of momentum to be 1/N , and Ki ∼

√
N indeed reproduces the

cutoff one calculates on the momentum of typical particles in a maximal entropy state.
de Sitter (dS) space has a maximal size causal diamond, even for trajectories of infinite

proper time. Following the logic of the previous paragraph, the natural cutoff on the mo-
mentum of typical particles in dS space is MP (RMP )−

1
2 . SUSY is restored in the R → ∞

limit, and this is the natural scale for splitting in supermultiplets. From the point of view
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of effective field theory, SUSY is a gauge symmetry and the breaking must take place by
the super Higgs effect, which means that this splitting is the gravitino mass. We obtain the
estimate m3/2 = KΛ1/4 for the relationship between the gravitino mass and the cosmolog-
ical constant. If we utilize Witten’s idea [?] that large extra dimensions explain the ratio
between the unification scale and the Planck scale, then we find K ∼ 10, which leads to
m3/2 ∼ 10−2 eV . This is (barely) consistent with experiment and leads, when phenomeno-
logical constraints are incorporated, to a rather specific model of TeV scale physics, with a
small number of parameters [9].

Note also the angular momentum cutoff for gravitinos is of order (RMP )
1
2 , which means

that they can be localized in an area A ∼ 1
m3/2MP

on the holographic screen. In [4] it was

argued that the R symmetry violating operators, which, in effective field theory, give rise to
the gravitino mass, arise from diagrams in which a single gravitino propagates to the horizon

and interacts with e
AM2

P
4 degenerate states there. A is the area over which the gravitino wave

function is spread on the horizon. The exponential contribution to the gravitino mass is thus

e−2m3/2Re
AM2

P
4 ,

and cancels for A ∼ 1
m3/2MP

. The holographic scaling law for the gravitino mass is the only

one which leads to a consistent power law scaling. Note in particular that for smaller values
of m3/2, like the “natural” scaling m3/2 ∼ R−1, these R symmetry violating diagrams are
exponentially large. In the HST formalism, particles with the “natural” scaling law are not
localized on the holographic screen, and cannot be considered particles at all.

The scaling laws for entropy in a finite volume give us general insight into the limits of
effective field theory. They tell us that only of order N3/2 of the N2 degrees of freedom in a
finite causal diamond can be well described by quantum effect field theory (QUEFT). The
rest are associated with the horizon . If the particle degrees of freedom interact strongly with
the horizon degrees of freedom they are absorbed by it and cannot be considered independent
particles. The QUEFT description breaks down.

In asymptotically flat space-time we can introduce a one parameter set of accelerated
trajectories in any causal diamond. Recall that in HST, there will be a different Hamiltonian
for each trajectory. The Hamiltonians are all time dependent, and we will concentrate on
the one appropriate to the first and last instants of time in the diamond2. We write

H(N, a) = Z(a)P0 +
1

N
V,

where V is an operator with a bound of order 1. P0 is the operator for free particle propa-
gation, which appears in the SUSY commutation relations. Z(a) = 1 for the geodesic, and
decreases with a, becoming of order 1

N
for the maximally accelerated observer. The operator

1
N
V couples all of the degrees of freedom and would thermalize them in a time of order N .

This leads to a thermal spectrum for the accelerated observers, with temperature increasing
with the acceleration.

2In a time symmetric situation, the appropriate evolution operators to consider are U(Tn,−Tn), propa-
gating from the past to the future tip of a nested set of diamonds, whose size is labeled by n. We are talking
about H(N), defined by U(TN ,−TN ) = e−iH(N)U(TN−1,−TN−1)eiH(N).
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In asymptotically flat space, for the geodesic observer, N increases with the proper time,
and S ≡ limN→∞U(TN ,−TN) consistently maps states where the particles are decoupled from
the horizon to other such states [8]. S is the scattering operator. In dS space, by contrast, the
proper time goes to infinity while N remains finite, the Hamiltonian asymptotes to a constant
and all degrees of freedom eventually thermalize. The time averaged density matrix, averaged
over a few times the dS Hubble time is maximally uncertain. The degeneracies of eigenstates
of P0 are such that this is a thermal state at the dS temperature for P0. Once thermalization
has occurred, QUEFT is only a good approximate description of rare fluctuations, in which
a localized system of particles materializes spontaneously from the dS “vacuum”.

However, there is another sense in which effective field theory is relevant to quantum
gravity for generic states of the system. In a remarkable paper [3], Jacobson showed that
Einstein’s equation follows from the first law of thermodynamics and the assumption that
entropy is proportional to area. Jacobson considers a general Lorentzian space-time and sets
up a local Rindler coordinate system near a generic point P. Now consider an accelerated
trajectory, with acceleration that we will eventually take to infinity. Define the energy to be
the energy as viewed by an observer following that trajectory, obtained by doing the integral
of the T00 component of the stress tensor in the accelerated coordinates. Use Unruh’s formula
for the temperature as a function of the acceleration, and Raychauduri’s equation to describe
the change in area transverse to the accelerated trajectory. Jacobson shows that dE = TdS,
becomes kµν(Rµν − 1

2
gµνR − 8πGTµν) = 0, where kµ is the limiting null velocity of the

accelerated observer. Since this is true at every point and for every null kµ, we get Einstein’s
equation, apart from a possible cosmological term, which vanishes when contracted with the
null vector.

Jacobson’s argument shows that the classical Einstein equations are the local hydrody-
namics of any quantum system obeying the Bekenstein-Hawking relation between entropy
and area. A full set of hydrodynamic equations require further specification of the stress ten-
sor, either by postulating an equation of state or introducing other classical fields. Jacobson
argues that these fields, and in particular the space-time metric, should not necessarily be
thought of as quantized fields. We do not quantize the hydrodynamic equations of generic
quantum systems.

This argument meshes perfectly with the formalism of HST. In HST the entropy/area
connection defines space-time in terms of quantum mechanics. In all extant examples satis-
fying the HST consistency requirements, the large causal diamond limit of the dynamics can
indeed be put in one to one correspondence with a solution of Einstein’s equations. In some
examples the stress tensor satisfies an equation of state, while in others, there is an addi-
tional classical scalar field [10]. In particular, the inflaton field in the holographic model of
inflation, is such a classical hydrodynamical field. Its fluctuations are introduced to match
a particular ansatz for the Hamiltonian of an underlying HST model, and their origin is
thermal, rather than quantum mechanical. As a consequence of decoherence, it is of course
impossible to verify observationally the putative quantum origin of CMB fluctuations.

Jacobson’s argument also fits with the long series of observations I have made over more
than a decade, which show that the idea borrowed from QFT, that solutions of a classical
field theory with different asymptotics, and different values of the c.c., correspond to different
states of the same Hamiltonian quantum mechanics, has no place in a quantum theory of
gravity. Those arguments were based on Matrix Theory, AdS/CFT, the analysis of Coleman-
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DeLucia tunneling, an analysis of production of regions of “metastable vacuum”, and an
analysis of the quantum meaning of the Wheeler DeWitt equation. Jacobson’s argument
shows us that gravitational field equations follow from local thermodynamics, but that the
value of the c.c. must be appended as an infrared boundary condition.

Jacobson’s thermodynamic effective field theory (THEFT) is a very general emergent
property of systems of quantum gravity, while the more conventional effective quantum field
theory (QUEFT) is restricted to asymptotically flat, and large radius dS and AdS universes,
and others which have morally similar asymptotics. In the dS case QUEFT is only a good
description over time scales less than or of order the Hubble time. On longer time scales,
localized excitations thermalize with the horizon degrees of freedom, which are not well
described (except thermodynamically) by QUEFT.

The principles of HST have profound consequences, which should eventually lead to
experimental verification or falsification of the theory. In particular, the relation between
the c.c. and the scale of SUSY breaking, gives a very low value for the masses of charginos.
These particles must be found at the LHC, with masses not too far above the current Fermilab
bound. It is likely that TeV physics is described by some version of the Pyramid Scheme [9],
though it is not clear how much of the structure of that model will be revealed at the LHC.
Dark matter is apt to be a hidden sector particle charged under a new kind of baryon number.
It’s likely to be fairly heavy, not a thermal relic, but produced by an asymmetry, and to
have either a magnetic or chromo-magnetic moment.

HST also gives us a completely non-singular, quantum description of the very early uni-
verse, which can closely match the results of inflationary models, and, unlike those models,
explains the low (localized) initial entropy of the part of the universe we see. It accommo-
dates an anthropic explanation of the value of the c.c. and the magnitude of initial density
fluctuations, while allowing us to argue that all other low energy parameters are determined
in terms of the c.c. . That is, the HST model of the world we observe may be fairly uniquely
fixed by a few cosmological parameters. It is not yet clear whether the HST model of the very
early universe has observational signals sufficiently different from classic inflation models, to
allow the two to be distinguished.

A huge amount of work remains to be done on all aspects of the HST formalism and
phenomenology. I hope this essay will convince some young talented people to think about
it.
Acknowledgements: I would like to thank W. Fischler, for his collaboration on much of
the work discussed in this essay. This work was supported in part by the U.S. Department
of Energy.
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